The Big Bang - Cosmic Expansion

\[\frac{dR}{dt} = \sqrt{\frac{8\pi G \rho}{3R}} \frac{\Lambda}{3} R^2 \]

According to Big Bang theory, the scale of the universe increases with time at a rate that depends on the density of matter, \(\rho \), and the size of the cosmological constant, \(\Lambda \). This is defined by the fundamental equation to the left.

Problem 1 - Determine the general form of the integral that relates the time, \(t \), to the value of the scale factor, \(R \); Solve the integral for the time, \(t \), but do not solve the integral for \(R \).

Problem 2 - Transform the integral for \(R \) to a new variable, \(U \), such that \(U = \left(\frac{A}{C} \right)^{1/3} R \) where \(A = \Lambda / 3 \) and \(C = 8\pi G \rho / 3 \).

Problem 3 - Solve the integral for two special cases A) The Inflationary Universe case where \(U >> 1 \) and B) the matter-dominated universe case where \(U << 1 \).

Problem 4 - Hubble's Constant is a measure of the rate of expansion of the universe. It is defined as \(H = 1/R \left(\frac{dR}{dt} \right) \). Find the formula for Hubble's Constant for the two cosmological cases described in Problem 3.
Problem 1 - The integral equation is then

\[\int \frac{1}{t} \, dt = \int \frac{dR}{\sqrt{\frac{8\pi G \rho}{3R} + \frac{\Lambda}{3} R^2}} \]

Problem 2 First clean up the rather cumbersome radical expression so that it only involves \(R \) to positive powers and the constants \(A \) and \(C \), by factoring out \((1/R)^{1/2} \) to get \((1/R)^{1/2} (C + A R^3)^{1/2} \). Factor out the constant \(C \) from the square-root so that the denominator of the integrand becomes \((1/R)^{1/2} C^{1/2} (1 + A/C R^3)^{1/2} \) and replace with \(U = (A/C)^{1/3} R \) to get

\[C^{1/2} (A/C)^{1/6} U^{-1/2} (1 + U^3)^{1/2} \]

Note that we have also transformed the \((1/R)^{1/2} \) factor by replacing it with \((A/C)^{1/6} U^{-1/2} \). Since \(dU = (A/C)^{1/3} dR \), we can now re-write the complete integrand as

\[(1/C)^{1/2} (C/A)^{1/6} (C/A)^{1/3} U^{1/2} dU / (1 + U^3)^{1/2} \]

After combining the constants \(A \) and \(C \) and replacing them with their definitions the integrand simplifies to \((3/\Lambda)^{1/2} U^{1/2} dU / (1 + U^3)^{1/2} \) and the integral becomes

\[t = \sqrt{\frac{3}{\Lambda}} \int \frac{U^{1/2} dU}{\sqrt{U^3 + 1}} \]

Problem 3 A) If \(U > 1 \), then the term under the square-root is essentially \(U^3 \), so we get \(U^{1/2} / U^{3/2} = 1/U \). This leads to an integrand of \((3/\Lambda)^{1/2} 1/U \, dU \) which is a fundamental integral whose solution is \(t = (3/\Lambda)^{1/2} \ln U + C \). This can be re-written as \(U(t) = e^{[(\Lambda/3)^{1/2} t]} \). From the definition for \(U \) we get

\[R(t) = \left(\frac{8\pi G \rho}{\Lambda} \right)^{1/3} e^{\left(\frac{\Lambda}{3} \right)^{1/2} t} \]

This represents a universe that expands at an exponential rate because of the positive pressure provided by the cosmological constant - a property of the energy of empty space. This solution is thought to describe our universe during its' inflationary' era shortly after the Big Bang.

Problem 3 B) In this case, \(U << 1 \) so the term under the square-root is essentially 1, and the integrand becomes \((3/\Lambda)^{1/2} U^{1/2} \, dU \). This is easily integrated to get \(t = (3/\Lambda)^{1/2} U^{3/2} \). After substituting for the definition of \(U \) we get \(t = (3/\Lambda)^{1/2} (\Lambda/8\pi G \rho)^{1/2} R^{3/2} \) so that

\[t = (3/8\pi G \rho)^{1/2} R^{3/2} \]

This can be easily inverted to get

\[R(t) = \left(\frac{8\pi G \rho}{\Lambda} \right)^{1/3} t^{2/3} \]

This solution is the 'matter-dominated' cosmology represented by Big Bang cosmology, and applies to the modern expansion of the universe.

Problem 4 A) \(H = (\Lambda/3)^{1/2} \) and B) \(H = 2/3 \, (1/t) \). In the inflationary case, the rate of expansion is constant in time, but in the matter-dominated case, the expansion rate decreases in proportion to the age of the universe.