Scientific notation is an important way to represent very big, and very small, numbers. Here is a sample of astronomical problems that will test your skill in using this number representation.

Problem 1: The sun produces 3.9×10^{33} ergs per second of radiant energy. How much energy does it produce in one year (3.2×10^7 seconds)?

Problem 2: One gram of matter converted into energy yields 3.0×10^{20} ergs of energy. How many tons of matter in the sun is annihilated every second to produce its luminosity of 3.9×10^{33} ergs per second? (One metric ton = 10^6 grams)

Problem 3: The mass of the sun is 1.98×10^{33} grams. If a single proton has a mass of 1.6×10^{-24} grams, how many protons are in the sun?

Problem 4: The approximate volume of the visible universe (A sphere with a radius of about 14 billion light years) is 1.1×10^{31} cubic light-years. If a light-year equals 9.5×10^{17} centimeters, how many cubic centimeters does the visible universe occupy?

Problem 5: A coronal mass ejection from the sun travels 1.5×10^{13} centimeters in 17 hours. What is its speed in kilometers per second?

Problem 6: The NASA data archive at the Goddard Space Flight Center contains 25 terabytes of data from over 1000 science missions and investigations. (1 terabyte = 10^{12} bytes). How many CD-roms does this equal if the capacity of a CD-rom is about 6×10^8 bytes? How long would it take, in years, to transfer this data by a dial-up modem operating at 56,000 bits/second? (Note: one byte = 8 bits).

Problem 7: Pluto is located at a distance of 5.9×10^{14} centimeters from Earth. At the speed of light (2.99×10^{10} cm/sec) how long does it take a light signal (or radio message) to travel to Pluto and return?

Problem 8: The planet HD209458b, now known as Osiris, was discovered by astronomers in 1999 and is at a distance of 150 light-years (1 light-year = 9.5×10^{12} kilometers). If an interstellar probe were sent to investigate this world up close, traveling at a maximum speed of 700 km/sec (about 10 times faster than our fastest spacecraft: Helios-1), how long would it take to reach Osiris?
Problem 1: The sun produces 3.9×10^{33} ergs per second of radiant energy. How much energy does it produce in one year (3.2×10^7 seconds)? Answer: $3.9 \times 10^{33} \times 3.2 \times 10^7 = 1.2 \times 10^{41}$ ergs.

Problem 2: One gram of matter converted into energy yields 3.0×10^{20} ergs of energy. How many tons of matter in the sun is annihilated every second to produce its luminosity of 3.9×10^{33} ergs per second? (One metric ton = 10^6 grams). Answer: $3.9 \times 10^{33}/3.0 \times 10^{20} = 1.3 \times 10^7$ metric tons of mass.

Problem 3: The mass of the sun is 1.98×10^{33} grams. If a single proton has a mass of 1.6×10^{-24} grams, how many protons are in the sun? Answer: $1.98 \times 10^{33}/1.6 \times 10^{-24} = 1.2 \times 10^{57}$ protons.

Problem 4: The approximate volume of the visible universe (A sphere with a radius of about 14 billion light years) is 1.1×10^{31} cubic light-years. If a light-year equals 9.5×10^{17} centimeters, how many cubic centimeters does the visible universe occupy? Answer: 1 cubic light year $= (9.5 \times 10^{17})^3 = 8.6 \times 10^{53}$ cubic centimeters, so the universe contains $8.6 \times 10^{53} \times 1.1 \times 10^{31} = 9.5 \times 10^{84}$ cubic centimeters.

Problem 5: A coronal mass ejection from the sun travels 1.5×10^{13} centimeters in 17 hours. What is its speed in kilometers per second? Answer: $1.5 \times 10^{13} / (17 \times 3.6 \times 10^3) = 2.4 \times 10^8$ cm/sec $= 2,400$ km/sec.

Problem 6: The NASA data archive at the Goddard Space Flight Center contains 25 terabytes of data from over 1000 science missions and investigations. (1 terabyte $= 10^{12}$ bytes). How many CD-roms does this equal if the capacity of a CD-rom is about 6×10^8 bytes? How long would it take, in years, to transfer this data by a dial-up modem operating at 56,000 bits/second? (Note: one byte $= 8$ bits). Answer: $2.5 \times 10^{13} / 6 \times 10^8 = 4.2 \times 10^4$ Cdroms. It would take $2.5 \times 10^{13}/7,000 = 3.6 \times 10^9$ seconds or about 110 years.

Problem 7: Pluto is located at a distance of 5.9×10^{14} centimeters from Earth. At the speed of light (2.99×10^{10} cm/sec) how long does it take a light signal (or radio message) to travel to Pluto and return? Answer: $2 \times 5.9 \times 10^{14}/2.99 \times 10^{10} = 3.9 \times 10^4$ seconds or 11 hours.

Problem 8: The planet HD209458b, now known as Osiris, was discovered by astronomers in 1999 and is at a distance of 150 light-years (1 light-year $= 9.5 \times 10^{12}$ kilometers). If an interstellar probe were sent to investigate this world up close, traveling at a maximum speed of 700 km/sec (about 10 times faster than our fastest spacecraft: Helios-1), how long would it take to reach Osiris? Answer: $150 \times 9.5 \times 10^{12}/700 = 2.0 \times 10^{12}$ seconds or about 63,000 years!