An Application of the Parallax Effect

Two NASA, STEREO satellites take images of the sun and its surroundings from two separate vantage points along Earth's orbit. From these two locations, one located ahead of the Earth, and the other located behind the Earth along its orbit, they can create stereo images of the 3-dimensional locations of coronal mass ejections (CMEs) and storms on or near the solar surface.

The three images below, taken on December 12, 2007, combine the data from the two STEREO satellites (left and right) taken from these two locations, with the single image taken by the SOHO satellite located half-way between the two STEREO satellites (middle). Notice that there is a large storm event, called Active Region 978, located on the sun. The changing location of AR978 with respect to the SOHO image shows the perspective change seen from the STEREO satellites. You can experience the same Parallax Effect by holding your thumb at arms length, and looking at it, first with the left eye, then with the right eye. The location of your thumb will shift in relation to background objects in the room.

The diagram to the right shows the relevant parallax geometry for the two satellites A and B, separated by an angle of 42 degrees as seen from the sun. The diagram lengths are not drawn to scale. The radius of the sun is $696,000 \mathrm{~km}$.

Problem 1: With a millimeter ruler, determine the scale of each image in $\mathrm{km} / \mathrm{mm}$. How many kilometers did AR978 shift from the center position (SOHO location for AR) between the two STEREO images? This is the average measure of 'L' in the diagram.

Problem 2: Using the Pythagorean Theorem, determine the equation for the height, h , in terms of R and L . Assume the relevant triangle is a right triangle.

Problem 3: How high (h) above the sun's
 surface, called the photosphere, was the AR978 viewed by STEREO and SOHO on December 12, 2007?

Answer Key

Problem 1: With a millimeter ruler, determine the scale of each image in $\mathrm{km} / \mathrm{mm}$. How many kilometers did AR978 shift from the center position (SOHO location for AR) between the two STEREO images? This is the measure of 'L' in the diagram.

Answer:

STEREO-Left image, sun diameter $=28 \mathrm{~mm}$, actual $=1,392,000 \mathrm{~km}$, so the scale is $1392000 \mathrm{~km} / 28 \mathrm{~mm}=49,700 \mathrm{~km} / \mathrm{mm}$
SOHO-center sun diameter $=36 \mathrm{~mm}$, so the scale is $1392000 \mathrm{~km} / 36 \mathrm{~mm}=38,700 \mathrm{~km} / \mathrm{mm}$
STEREO-right sun diameter $=29 \mathrm{~mm}$, so the scale is $1392000 \mathrm{~km} / 29 \mathrm{~mm}=48,000 \mathrm{~km} / \mathrm{mm}$

Taking the location of the SOHO image for AR978 as the reference, the left-hand image shows that AR978 is about 5 mm to the right of the SOHO location which equals $5 \mathrm{~mm} x$ $49,700 \mathrm{~km} / \mathrm{mm}=248,000 \mathrm{~km}$. From the right-hand STEREO image, we see that AR978 is about 5 mm to the left of the SOHO position or $5 \mathrm{~mm} \times 48,000 \mathrm{~km} / \mathrm{mm}=240,000 \mathrm{~km}$. The average is $\mathbf{2 4 4 , 0 0 0}$ kilometers.

Problem 2: Using the Pythagorean Theorem, determine the equation for the height, h , in terms of R and L .

Answer:

$$
\begin{aligned}
& (R+h)^{2}=R^{2}+L^{2} \\
& h=\left(R^{2}+L^{2}\right)^{1 / 2}-R
\end{aligned}
$$

Problem 3: How high (h) above the sun's surface, called the photosphere, was the AR978 viewed by STEREO and SOHO on December 12, 2007?

Answer: $h=\left((244,000)^{2}+(696,000)^{2}\right)^{1 / 2}-696,000$
$h=737,500-696,000$
$h=41,500$ kilometers

