The Launch of the Mars Science Laboratory

This sequence of stills was obtained from a YouTube.com video of the launch of MSL by United Space Alliance available at
http://www.youtube.com/watch? $\mathrm{v=0cxsvVBemHY}$

This sequence shows the launch of the MSL mission from the Kennedy Space Center Launch Complex 49 on November 27, 2011 at 10:02 EST. The four images were taken, from bottom to top, at times 10:02:48 EST, 10:02:50 EST, 10:02:51 EST and 10:02:52 EST. At the distance of the launch pad, the width of each image is 400 meters.

Problem 1 - With the help of a millimeter ruler, what is the scale of each image in meters $/ \mathrm{mm}$?

Problem 2 - For each image, what is the distance between the bottom of the image and the base of the rocket nozzle for the Atlas V rocket in each scene?

Problem 3 - What is the estimated distance from the base of the launch pad to the rocket nozzle in each image?

Problem 4 - From the time information, what is the average speed of the rocket between A) Image 1 and 2? B) Image 2 and 3 ? C) Image 3 and 4 ?

Problem 5 - From the speed information in Problem 4, what is the average acceleration between A) Image 1 and Image 3? B) Image 2 and Image 4?

Problem 6 - Graph the height of the rocket versus the time in seconds since launch.

Problem 7 - Graph the speed of the rocket versus time in seconds after launch. For the time, use the midpoint time for each speed interval.

Problem 8 - Graph the acceleration of the rocket versus time in seconds after launch. For the time, use the midpoint time for each acceleration interval.

Problem 1 - Answer: Width $=69 \mathrm{~mm}$, so scale $=400 \mathrm{~m} / 69 \mathrm{~mm}=5.8$ meters $/ \mathrm{mm}$
Problem 2 - Answer: $8 \mathrm{~mm}, 18 \mathrm{~mm}, 24 \mathrm{~mm}$ and 32 mm so using the scale of the image, the actual distances are $46 \mathrm{~m}, 104 \mathrm{~m}, 139 \mathrm{~m}$ and 186 meters.

Problem 3 - Answer: Take the differences in the measurements relative to the first image at the moment of launch to get $\mathrm{h} 1=46 \mathrm{~m}-46 \mathrm{~m}=0 \mathrm{~m}, \mathrm{~h} 2=104 \mathrm{~m}-46 \mathrm{~m}=58 \mathrm{~m}, \mathrm{~h} 3=139 \mathrm{~m}-46 \mathrm{~m}=93$ m and $\mathrm{h} 4=186 \mathrm{~m}-46 \mathrm{~m}=140 \mathrm{~m}$.

Problem 4 - Answer: A) v= distance/time, v1 = (58m-0m)/2sec = 29m/sec B) v2 =(93m$58 \mathrm{~m}) / 1 \mathrm{sec}=35 \mathrm{~m} / \mathrm{sec}, \mathrm{C}) \mathrm{v} 3=(140 \mathrm{~m}-93 \mathrm{~m}) / 1 \mathrm{sec}=47 \mathrm{~m} / \mathrm{sec}$.

Problem 5 - Answer: A) a1 $\left.=(\mathrm{v} 2-\mathrm{v} 1) / 3 \mathrm{sec}=(35-29) / 3=6 / 3=2 \mathbf{m} / \mathbf{s e c}^{2} . \mathrm{B}\right)$ a2 $=(\mathrm{V} 3-$ $\mathrm{v} 2) / 2 \mathrm{sec}=(47-35) / 2 \mathrm{sec}=6 \mathrm{~m} / \mathrm{sec}^{2}$.

Problem 6 - Graph the height of the rocket versus the time in seconds since launch.

Problem 7 - Graph the speed of the rocket versus time in seconds after launch. For the time, value, use the midpoint time for each speed interval. Answer: Left Above. For the first speed, the two height measurements are made at $\mathrm{T}=0$ and $\mathrm{T}=2$, so the speed V 1 will be plotted at the midpoint time: $\mathrm{T}=(2-0) / 2=1 \mathrm{sec}$

Problem 8 - Graph the acceleration of the rocket versus time in seconds after launch. For the time value, use the midpoint time for each acceleration interval. Answer: Right Above.

