We have all seen pictures of craters on the moon. The images on the next two pages show close-up views of the cratered lunar surface near the Apollo 15 and Apollo 11 landing areas. They were taken by NASA's Lunar Reconnaissance Orbiter (LRO) from an orbit of only 25 kilometers!

Meteors do not arrive on the moon at the same rates. Very large meteors that produce the largest craters are much less common than the smaller bodies producing the smallest craters. That’s because there are far more small bodies in space than large ones. Astronomers can use this fact to estimate the ages of various surfaces in the solar system by just comparing the number of large craters and small craters that they find in a given area.

Let’s have a look at the images below, and figure out whether Apollo-11 landed in a relatively younger or older region than Apollo 15!

![Apollo-15 landing area](image)

This is the Apollo-15 landing area near the foot of the Apennine Mountain range. Note the bar indicating the 'scale' of the image. The arrow points to the location of the Lunar Descent Module.
This image taken by LRO is of the Apollo-11 landing area in Mare Tranquilitatus, with the arrow pointing to the Lunar Descent Module. The LDM was the launching platform for the Apollo-11 Lunar Excursion Module, which carried astronauts Neil Armstrong and Buzz Aldrin back to the orbiting Command Module for the trip back to Earth. Note the length of the '500 meter' bar, which gives an indication of the physical scale of the image. How long would it take you to walk 500 meters?

Astronomers assume that during the last 3 billion years following the so-called 'Late Heavy Bombardment Era' the average time between impacts that created craters has been constant. That means that the more time that passes, the more craters you will find, and that they are produced at a more or less steady number for each million years that passes. Also, by the Law of Superposition, younger craters lie on top of older craters.

Space Math http://spacemath.gsfc.nasa.gov
Dating a cratered surface.

For each of the above images, perform these steps.

Step 1 - With the help of a millimeter ruler, and the '500 meter' line in the image, calculate the scale factor for the image in terms of meters per millimeter.

Step 2 - Calculate the total area of the image in square kilometers.

Step 3 - Identify and count all craters that are bigger than 20 meters in diameter.

Step 4 - Divide your answer in Step 3 by the area in square kilometers in Step 2.

Step 5 - Look at the table below and estimate the average age of the surface.

Problem 1 - From your answer for each Apollo landing area in Step 5, which region of the moon is probably the youngest?

<table>
<thead>
<tr>
<th>Estimated Age</th>
<th>Total number of craters per square kilometer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 years</td>
<td>0.0008</td>
</tr>
<tr>
<td>10000 years</td>
<td>0.008</td>
</tr>
<tr>
<td>100,000 years</td>
<td>0.08</td>
</tr>
<tr>
<td>1 million years</td>
<td>0.8</td>
</tr>
<tr>
<td>10 million years</td>
<td>8.0</td>
</tr>
<tr>
<td>100 million years</td>
<td>80.0</td>
</tr>
<tr>
<td>1 billion years</td>
<td>800.0</td>
</tr>
</tbody>
</table>

Table above is based on the figure below for D = 0.02 kilometers.

Another thing you might consider doing is to measure the diameters of as many craters as you can, and then plot a histogram (bar graph) of the number of craters you counted in a range of size intervals such as 5 - 10 meters, 11 to 20, 21 to 30 and so on. Because erosion (even on the moon!) tends to eliminate the smallest craters first, you can compare two regions on the moon in terms of how much erosion has occurred.

Problem 2 - Select the same-sized area on each of the Apollo images and count all the craters you can find within the size intervals you selected. How do the two landing areas compare to one another in terms of their crater frequency histograms?

Problem 3 - Which surface do you think has experienced the most re-surfacing or erosion?

Problem 4 - Without an atmosphere, winds or running water, what do you think could have caused changes in the lunar surface after the craters were formed?

Note to Teachers: More technical information on crater dating can be found at "How young is the Crater Giordano Bruno"

http://www.psrd.hawaii.edu/Feb10/GiordanoBrunoCrater.html

Space Math http://spacemath.gsfc.nasa.gov