 There are no known
extremophiles that can exist at a
temperature lower than the freezing
temperature of water. It is believed that
liquid water is a crucial ingredient to the
chemistry that leads to the origin of life.
To change water-ice to liquid water
requires energy.
First, you need energy to raise
the ice from wherever temperature it is,
to 0 Celsius. This is called the Specific
Heat and is 2.04 kiloJoules/kilogram C
Then you need enough energy
added to the ice near 0 C to actually melt
the ice by increasing the kinetic energy
of the water molecules so that their
hydrogen bonds weaken, and the water
stops acting like a solid. This is called
the Latent Heat of Fusion and is 333
kiloJoules/kilogram.
Let's see how this works!

Example 1: You have a 3 kilogram block of ice at a temperature of -20 C . The energy needed to raise it by 20 C to a new temperature of 0 C is $\mathrm{Eh}=2.04$ kiloJoules/kg C) x 3 kilograms $\times(20 \mathrm{C})=2.04 \times 3 \times 20=122$ kiloJoules.

Example 2: You have a 3 kilogram block of ice at 0 C and you want to melt it completely into liquid water. This requires $\mathrm{Em}=333$ kiloJoules/kg $\times 3$ kilograms = 999 kiloJoules.

Example 3: The total energy needed to melt a 3 kilogram block of ice from -20 C to $0 C$ is $E=E h+E m=122$ kiloJoules +999 kiloJoules $=1,121$ kiloJoules.

Problem 1 - On the surface of the satellite Europa (see NASA's Galileo photo above), the temperature of ice is -220 C . What total energy in kiloJoules is required to melt a 100 kilogram block of water ice on its surface? (Note: Calculate Eh and Em separately then combine them to get the total energy.)

Problem 2 - To a depth of 1 meter, the total mass of ice on the surface of Europa is $2.8 \times 10^{16}$ kilograms. How many Joules would be required to melt the entire surface of Europa to this depth? (Note: Calculate Eh and Em separately then combine them to get the total energy. Then convert kiloJoules to Joules)

Problem 3 - The sun produces $4.0 \times 10^{26}$ Joules every second of heat energy. How long would it take to melt Europa to a depth of 1 meter if all of the Sun's energy could be used? (Note: The numbers are BIG, but don't panic!)

Problem 1 - On the surface of the satellite Europa, the temperature of ice is -220 C . What total energy is required to melt a 100 kilogram block of water ice on its surface?

Answer: You have to raise the temperature by 220 C, then

$$
\begin{aligned}
E & =2.04 \times 220 \times 100+333 \times 100 \\
& =44,880+33,300 \\
& =78,180 \text { kiloJoules }
\end{aligned}
$$

Problem 2 - To a depth of 1 meter, the total mass of ice on the surface of Europa is $2.8 \times 10^{16}$ kilograms. How many joules would be required to melt the entire surface of Europa to this depth?

Note: The radius of Europa is $1,565 \mathrm{~km}$. The surface area is $4 \times \pi \times(1,565,000 \mathrm{~m})^{\mathbf{2}}=$ $3.1 \times 10^{13}$ meters $^{2}$. A 1 meter thick shell at this radius has a volume of $3.1 \times 10^{13}$ meters $^{2} \times 1$ meter $=3.1 \times 10^{13}$ meters ${ }^{3}$. The density of water ice is $917 \mathrm{kilograms} / \mathrm{m}^{3}$ ,so this ice layer on Europa has a mass of $3.1 \times 10^{13} \times 917=2.8 \times 10^{16}$ kilograms.

$$
\begin{aligned}
\text { Energy } & =(2.04 \times 220+333) \times 2.8 \times 10^{16} \mathrm{~kg} \\
& =2.2 \times 10^{19} \text { kiloJoules } \\
& =2.2 \times 10^{22} \text { Joules. }
\end{aligned}
$$

Problem 3 - The sun produces $4.0 \times 10^{\mathbf{2 6}}$ Joules every second of heat energy. How long would it take to melt Europa to a depth of 1 meter if all of the sun's energy could be used?

Answer: Time $=$ Amount $/$ Rate

$$
\begin{aligned}
& =2.2 \times 10^{22} \text { Joules } / 4.0 \times 10^{26} \text { Joules } \\
& =0.000055 \text { seconds }
\end{aligned}
$$

