

The Asteroid 2005 YU55 passed inside the orbit of our moon between November 8 and November 9, 2011. The diagram shows the lunar orbit as a circle center on Earth. The diagonal line is the orbit of Earth around the sun. The line segment $A B$ is a portion of the orbit of the asteroid. The horizontal line at the bottom of the page is 1 million kilometers long at the scale of the figure. Point A is the location of the asteroid on November 8.438. Point B is its location one day later on November 9.438, where we have used digital days to indicate a precise hour and minute within each endpoint date in terms of Universal Time (UT). For example: 9.500 is 12:00 UT on November 9.

Problem 1 - To the nearest minute, what is the Universal Time hour and minute for each of the endpoint dates?

Problem 2 - Using a millimeter ruler, what is the scale of this diagram in kilometers per millimeter?

Problem 3 - To the nearest 100 km , how far will the asteroid travel between the endpoint times?

Problem 4 - How fast will the asteroid be traveling in kilometers per hour?

Problem 5 - On what date and Universal Time will the asteroid be closest to Earth, and what is this distance?

The line segment $A B$ is a portion of the orbit of the asteroid. The horizontal line at the bottom of the page is 1 million kilometers long at the scale of the figure. Point A is the location of the asteroid on November 8.438. Point B is its location one day later on November 9.438, where we have used digital days to indicate a precise hour and minute within each endpoint date in terms of Universal Time.

Problem 1 - What is the Universal hour and minute for each of the endpoint dates?
Answer -0.438 days $=0.438 \times 24 \mathrm{hrs}=10.512 \mathrm{~h}$ and $(10.512-10) \times 60 \mathrm{~m}=31 \mathrm{~m}$, so the time is 10:31 UT, then Point A is November 8 at 10:31 UT and Point B is November 9 at 10:31 UT.

Problem 2 - Using a millimeter ruler, what is the scale of this diagram in thousands of kilometers per millimeter?
Answer - 1 million km / 81 millimeters $=\mathbf{1 2 3 4 6} \mathbf{~ k m} / \mathrm{mm}$.

Problem 3 - How far will the asteroid travel between the endpoint times? Answer - The distance is 81 mm or $\mathbf{1}$ million km.

Problem 4 - How fast will the asteroid be traveling in kilometers per hour? Answer - 1 million km / (9.438-8.438) = 1 million km/day or $41,667 \mathrm{~km} / \mathrm{hr}$.

Problem 5 - On what date and Universal Time will the asteroid be closest to Earth?
Answer - This happens 46 mm from Point A.

$$
\mathrm{D}=46 \times 12346 \mathrm{~km}=567,916 \mathrm{~km} .
$$

The speed is $41,667 \mathrm{~km} / \mathrm{hr}$ so $\mathrm{T}=567,916 / 41667=13.63$ hours from Point A .
This equals 0.568 days.
Then $8.438+0.568=9.006$ which is 00:09 UT on November 9 .

