When a cloud is dense enough with water droplets it appears fleecy white, it is also dense enough that it can cause a shadow. Scientists use the terms albedo and transmission to describe how clouds and other materials reflect and transmit light.

Albedo: The amount of light a cloud reflects, making it appear white.

Transmission: The amount of light that passes through a cloud to the ground.

Albedo and transmission can be conveniently measured in percentages. For example, in the figure to the left, if 100% of the light energy falls on the cloud and 70% is reflected back into space, the cloud albedo is 70% and the percentage of transmitted energy is 100% - 70% = 30%.

Problem 1 – A cloud has an albedo of 65%, but a sensitive light meter registers only 30% transmitted light directly under the cloud. How much light energy has been absorbed by the cloud to heat it?

Problem 2 – A satellite view of a small area of Earth from space shows that 1/6 of the area had soil cover with an albedo of 20%, 1/3 of the area was covered by clouds with an albedo of 60%, and 1/2 of the area covered by water with an albedo of 10%. What is the average albedo of this area?
Instead of transmission, scientists prefer to use the term opacity, x, because it can be more easily calculated from the actual properties of the cloud. For example, $x = kL$, where L is the thickness of the cloud and k is a constant that describes the density of droplets in the cloud and droplet sizes. Transmission, T, and opacity are related by the formula:

$$T = 100\% \times 10^{-0.69x}$$

Problem 3 - Graph the function $T(x)$ for opacities from 0.0 to 5.0. To the nearest percentage, what is the range of cloud transmission and albedo for opacities covered by your graph?

Problem 4 – A cumulus cloud is 2.5 kilometers thick and its opacity constant, $k = 0.5$, what is the albedo of this cloud, and how much light is transmitted through the cloud to the ground?
Common Core Math Standards:
CCSS.Math.Content.HSF-LE.A.2 Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).

CCSS.Math.Content.HSF-LE.A.4 For exponential models, express as a logarithm the solution to abct = d where a, c, and d are numbers and the base b is 2, 10, or e; evaluate the logarithm using technology.

Problem 1 – A cloud has an albedo of 65%, but a sensitive light meter registers only 30% transmitted light directly under the cloud. How much light energy has been absorbed by the cloud to heat it? Answer: With an albedo of 65%, 35% of the light energy should have reached the ground. Since only 30% was detected, that means that 5% of the light energy was absorbed by the cloud to heat it.

Problem 2 – A satellite view of a small area of Earth from space shows that 1/6 of the area had soil cover with an albedo of 20%, 1/3 of the area was covered by clouds with an albedo of 60%, and 1/2 of the area covered by water with an albedo of 10%. What is the average albedo of this area? Answer: A = 1/6 (20%) + 2/6(60%) + 3/6(10%) = 28%

Problem 3 - Graph the function T(x) for opacities from 0.0 to 5.0. To the nearest percentage, what is the range of cloud transmission and albedo for opacities covered by your graph?

Problem 4 – A cumulus cloud is 2.5 kilometers thick and its opacity constant, k = 0.5, what is the albedo of this cloud, and how much light is transmitted through the cloud to the ground?

Answer: x= kL so x= (0.5)(2.5) = 1.25 then the transmission T = 100% 10^{-0.69(1.25)}
Then T = 100%(0.137)
And so T = 13.7% and the albedo = 100% - 13.7% = 86.3%

Space Math http://spacemath.gsfc.nasa.gov