

Problem 1 - A cubic meter container contains aerosols composed of soot produced from the combustion of diesel fuel. Each spherical aerosol particle has a density of 2 grams $/ \mathrm{cm}^{3}$. If the soot particle has a diameter of 20 nanometers, how much mass is in a single soot particle expressed in A) grams? B) micrograms?

Problem 2 - Scientists like to use two measurement units to indicate the density of aerosols in a sample of air: Particles/meter ${ }^{3}$ or micrograms $/$ meter $^{3}\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$. The average aerosol density for Los Angeles, California between October 2002 and September 2003 was $40 \mu \mathrm{~g} / \mathrm{m}^{3}$. 50% of these aerosols by mass were particulates with diameters of about 5 microns, while the remaining aerosols were mostly 500 nanometers in size. What was the density of the aerosols in particles $/ \mathrm{m}^{3}$ in each case, if the aerosols were small solid spheres with a density of $3.0 \mathrm{gm} / \mathrm{cm}^{3}$?

Problem 1 - A cubic meter container contains aerosols composed of soot produced from the combustion of diesel fuel. Each spherical aerosol particle has a density of 2 grams/cm3. If the soot particle has a diameter of 20 nanometers, how much mass is in a single soot particle expressed in A) grams? B) micrograms?

Answer: First convert the particle diameter to centimeters:

$V=4 / 3 \pi R^{3}$, and $R=D / 2$, so $\quad V=1.333 \times 3.141 \times\left(1.0 \times 10^{-6} \mathrm{~cm}\right)^{3}=4.2 \times 10^{-18} \mathrm{~cm}^{3}$.
Mass $=$ density \times volume, so
A) \quad Mass $=2.0 \mathrm{gm} / \mathrm{cm}^{3} \times 4.2 \times 10^{-18} \mathrm{~cm}^{3}=8.4 \times 10^{-18}$ grams.
B) Mass $=8.4 \times 10^{-18}$ grams $\times\left(1\right.$ microgram $/ 10^{-6}$ grams $)=8.4 \times 10^{-12}$ micrograms.

Problem 2 - Scientists like to use two measurement units to indicate the density of aerosols in a sample of air: Particles/meter ${ }^{3}$ or micrograms $/$ meter $^{3}\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$. The average aerosol density for Los Angeles, California between October 2002 and September 2003 was $40 \mu \mathrm{~g} / \mathrm{m}^{3}$. 50% of these aerosols by mass were particulates with diameters of about 5 microns, while the remaining aerosols were mostly 500 nanometers in size. What was the density of the aerosols in particles $/ \mathrm{m}^{3}$ in each case, if the aerosols were small solid spheres with a density of 3.0 $\mathrm{gm} / \mathrm{cm}^{3}$?

Answer: Aerosol masses:
5 micron case: $R=2.5 \times 10^{-4} \mathrm{~cm}$ then $\mathrm{V}=4 / 3 \pi\left(2.5 \times 10^{-4} \mathrm{~cm}\right)^{3}=6.5 \times 10^{-11} \mathrm{~cm}^{3}$.

$$
\text { Mass }=3.0 \mathrm{gm} / \mathrm{cm}^{3} \times 6.5 \times 10^{-11} \mathrm{~cm}^{3}=2.0 \times 10^{-10} \mathrm{gm}
$$

500 nanometer case: $R=5.0 \times 10^{-5} \mathrm{~cm} . V=4 / 3 \pi\left(5.0 \times 10^{-5} \mathrm{~cm}\right)^{3}=5.2 \times 10^{-13} \mathrm{~cm}^{3}$.

$$
\text { Mass }=3.0 \mathrm{gm} / \mathrm{cm}^{3} \times 5.2 \times 10^{-13} \mathrm{~cm}^{3}=1.6 \times 10^{-12} \mathrm{gm}
$$

Since 50% of the aerosols were in each category and the total density was $40 \mu \mathrm{~g} / \mathrm{m}^{3}$,

So although there were an equal amount of particles by their total mass, the small particles were 120 times more numerous as individual particles in the air samples.

