

Once you have discovered a planet, you need to figure out whether liquid water might be present. In our solar system, Mercury and Venus are so close to the sun that water cannot remain in liquid form. It vaporizes! For planets beyond Mars, the sun is so far away that water will turn to ice. Only in what astronomers call the Habitable Zone (shown in green in the figure above) will a planet have a chance for being at the right temperature for liquid water to exist in large quantities (oceans) on its surface!

The Table on the following page lists the 54 planets that were discovered by NASA's Kepler Observatory in 2010. These planets come in many sizes as you can see by their radii. The planet radii are given in terms of the Earth, where '1.0' means a planet has a radius of exactly 1 Earth radius (1.0 Re) or 6,378 kilometers. The distance to each planet's star is given in multiples of our Earth-Sun distance, called an Astronomical Unit, so that '1.0 AU' means exactly 150 million kilometers.

Problem 1 - For a planet discovered in its Habitable Zone, and to the nearest whole number, what percentage of planets are less than 4 times the radius of Earth?

Problem 2 - About what is the average temperature of the planets for which $\mathrm{R}<4.0 \mathrm{Re}$?
Problem 3 - About what is the average temperature of the planets for which $\mathrm{R}>4.0 \mathrm{Re}$?
Problem 4-Create two histograms of the number of planets in each distance zone between 0.1 and 1.0 AU using bins that are 0.1 AU wide. Histogram-1: for the planets with $\mathrm{R}>4.0 \mathrm{Re}$. Histogram-2 for planets with $\mathrm{R}<4.0 \mathrm{Re}$. Can you tell whether the smaller planets favor different parts of the Habitable Zone than the larger planets?

Problem 5 - If you were searching for Earth-like planets in our Milky Way galaxy, which contains 40 billion stars like the ones studies in the Kepler survey, how many do you think you might find in our Milky Way that are at about the same distance as Earth from its star, about the same size as Earth, and about the same temperature ($270-290 \mathrm{~K}$) if 157,453 stars were searched for the Kepler survey?

Problem 1 - For a planet discovered in its Habitable Zone, and to the nearest whole number, what percentage of planets are less than 4 times the radius of Earth? Answer: There are 28 planets for which $R<4.0$ re, so $P=100 \% \times(28 / 54)=52 \%$

Problem 2-About what is the average temperature of the planets for which $\mathrm{R}<4.0 \mathrm{Re}$? Answer; Students will identify the 28 planets in the table that have $R<4.0$, and then average the planet's temperatures in Column 6. Answer: 317 K.

Problem 3 - About what is the average temperature of the planets for which $\mathrm{R}>4.0 \mathrm{Re}$? Students will identify the 26 planets in the table that have $R>4.0$, and then average the planet's temperatures in Column 6. Answer: $\mathbf{3 0 6}$ K.

Problem 4 - Create two histograms of the number of planets in each distance zone between 0.1 and 1.0 AU using bins that are 0.1 AU wide. Histogram-1: for the planets with $\mathrm{R}>4.0 \mathrm{Re}$. Histogram-2 for planets with $\mathrm{R}<4.0 \mathrm{Re}$. Can you tell whether the smaller planets favor different parts of the Habitable Zone than the larger planets? Answer; They tend to be found slightly closer to their stars, which is why in Problem 2 their average temperatures were slightly hotter than the larger planets.

Problem 5 - If you were searching for Earth-like planets in our Milky Way galaxy, which contains 40 billion stars like the ones studies in the Kepler survey, how many do you think you might find in our Milky Way that are at about the same distance as Earth from its star, about the same size as Earth, and about the same temperature ($270-290 \mathrm{~K}$) if 157,453 stars were searched for the Kepler survey?

Answer: Students may come up with a number of different strategies and estimates. For example, they might create Venn Diagrams for the data in the table that meet the criteria given in the problem. Then, from the number of planets in the intersection, find their proportion in the full sample of 54 planets, then multiply this by the ratio of 40 billion to 157,453 . Estimates near 1 million are in the right range.

Table of Habitable Zone Candidates

	Planet Name (KOI)	Orbit Period (days)	Distance To Star (AU)	Planet Radius (Re)	Planet Temp. (K)	Star Temp. (K)
1	683.01	278	0.84	4.1	239	5,624
2	1582.01	186	0.63	4.4	240	5,384
3	1026.01	94	0.33	1.8	242	3,802
4	1503.01	150	0.54	2.7	242	5,356
5	1099.01	162	0.57	3.7	244	5,665
6	854.01	56	0.22	1.9	248	3,743
7	433.02	328	0.94	13.4	249	5,237
8	1486.01	255	0.80	8.4	256	5,688
9	701.03	122	0.45	1.7	262	4,869
10	351.01	332	0.97	8.5	266	6,103
11	902.01	84	0.32	5.7	270	4,312
12	211.01	372	1.05	9.6	273	6,072
13	1423.01	124	0.47	4.3	274	5,288
14	1429.01	206	0.69	4.2	276	5,595
15	1361.01	60	0.24	2.2	279	4,050
16	87.01	290	0.88	2.4	282	5,606
17	139.01	225	0.74	5.7	288	5,921
18	268.01	110	0.41	1.8	295	4,808
19	1472.01	85	0.37	3.6	295	5,455
20	536.01	162	0.59	3.0	296	5,614
21	806.01	143	0.53	9.0	296	5,206
22	1375.01	321	0.96	17.9	300	6,169
23	812.03	46	0.21	2.1	301	4,097
24	865.01	119	0.47	5.9	306	5,560
25	351.02	210	0.71	6.0	309	6,103
26	51.01	10	0.06	4.8	314	3,240
27	1596.02	105	0.42	3.4	316	4,656
28	416.02	88	0.38	2.8	317	5,083
29	622.01	155	0.57	9.3	327	5171
30	555.02	86	0.38	2.3	331	5,218
31	1574.01	115	0.47	5.8	331	5,537
32	326.01	9	0.05	0.9	332	3,240
33	70.03	78	0.35	2.0	333	5,342
34	1261.01	133	0.52	6.3	335	5,760
35	1527.01	193	0.67	4.8	337	5,470
36	1328.01	81	0.36	4.8	338	5,425
37	564.02	128	0.51	5.0	340	5,686
38	1478.01	76	0.35	3.7	341	5,441
39	1355.01	52	0.27	2.8	342	5,529
40	372.01	126	0.50	8.4	344	5,638
41	711.03	125	0.49	2.6	345	5,488
42	448.02	44	0.21	3.8	346	4,264
43	415.01	167	0.61	7.7	352	5,823
44	947.01	29	0.15	2.7	353	3,829
45	174.01	56	0.27	2.5	355	4,654
46	401.02	160	0.59	6.6	357	5,264
47	1564.01	53	0.28	3.1	360	5,709
48	157.05	118	0.48	3.2	361	5,675
49	365.01	82	0.37	2.3	363	5,389
50	374.01	173	0.63	3.3	365	5,829
51	952.03	23	0.12	2.4	365	3,911
52	817.01	24	0.13	2.1	370	3,905
53	847.01	81	0.37	5.1	372	5,469
54	1159.01	65	0.30	5.3	372	4,886

