

The amount of power that a star produces in light is related to the temperature of its surface and the area of the star. The hotter a surface is, the more light it produces. The bigger a star is, the more surface it has. When these relationships are combined, two stars at the same temperature can be vastly different in brightness because of their sizes.

Image: Betelgeuse (Hubble Space Telescope.) It is 950 times bigger than the sun!

The basic formula that relates stellar light output (called luminosity) with the surface area of a star, and the temperature of the star, is L = A x F where the star is assumed to be spherical with a surface area of A = 4 π R², and the radiation emitted by a unit area of its surface (called the flux) is given by F = σ T⁴. The constant, σ , is the Stefan-Boltzman radiation constant and it has a value of σ = 5.67 x 10⁻⁵ ergs/ (cm² sec deg⁴). The luminosity, L, will be expressed in power units of ergs/sec if the radius, R, is expressed in centimeters, and the temperature, T, is expressed in degrees Kelvin. The formula then becomes,

$$L = 4 \pi R^2 \sigma T^4$$

Problem 1 - The Sun has a temperature of 5700 Kelvins and a radius of 6.96 x 10^5 kilometers, what is its luminosity in A) ergs/sec? B) Watts? (Note: 1 watt = 10^7 ergs/sec).

Problem 2 - The red supergiant Antares in the constellation Scorpius, has a temperature of 3,500 K and a radius of 700 times the radius of the sun. What is its luminosity in A) ergs/sec? B) multiples of the solar luminosity?

Problem 3 - The nearby star, Sirius, has a temperature of 9,200 K and a radius of 1.76 times our Sun, while its white dwarf companion has a temperature of 27,400 K and a radius of 4,900 kilometers. What are the luminosities of Sirius-A and Sirius-B compared to our Sun?

Calculus:

Problem 4 - Compute the total derivative of L(R,T). If a star's radius increases by 10% and its temperature increases by 5%, by how much will the luminosity of the star change if its original state is similar to that of the star Antares? From your answer, can you explain how a star's temperature could change without altering the luminosity of the star. Give an example of this relationship using the star Antares!

Space Math

http://spacemath.gsfc.nasa.gov

Answer Key

Problem 1 - We use L = 4 (3.141) $R^2 (5.67 \times 10^{-5}) T^4$ to get L (ergs/sec) = 0.00071 R(cm)² T(degreesK)⁴ then,

A) $L(ergs/sec) = 0.00071 \text{ x} (696,000 \text{ km x } 10^5 \text{ cm/km})^2 (5700)^4 = 3.6 \text{ x } 10^{33} \text{ ergs/sec}$

B) $L(watts) = 3.6 \times 10^{33} (ergs/sec) / 10^7 (ergs/watt) = 3.6 \times 10^{25} watts.$

Problem 2 - A) The radius of Antares is 700 x 696,000 km = 4.9×10^8 km. L(ergs/sec) = $0.00071 \times (4.9 \times 10^8 \text{ km} \times 10^5 \text{ cm/km})^2 (3500)^4 = 2.5 \times 10^{38} \text{ ergs/sec}$ B) L(Antares) = $(2.5 \times 10^{38} \text{ ergs/sec}) / (3.6 \times 10^{33} \text{ ergs/sec}) = 71,000 \text{ L(sun)}.$

Problem 3 - Sirius-A radius = $1.76 \times 696,000 \text{ km} = 1.2 \times 10^{6} \text{ km}$ L(Sirius-A) = $0.00071 \times (1.2 \times 10^{6} \text{ km} \times 10^{5} \text{ cm/km})^{2} (9200)^{4} =$ **7.3 \times 10^{34} \text{ ergs/sec}** L = $(7.3 \times 10^{34} \text{ ergs/sec}) / (3.6 \times 10^{33} \text{ ergs/sec}) =$ **20.3 L(sun).** L(Sirius-B) = $0.00071 \times (4900 \text{ km} \times 10^{5} \text{ cm/km})^{2} (27,400)^{4} =$ **9.5 \times 10^{31} \text{ ergs/sec}** L(Sirius-B) = $9.5 \times 10^{31} \text{ ergs/sec} / 3.6 \times 10^{33} \text{ ergs/sec} =$ **0.026 L(sun).**

Advanced Math:

Space Math

Problem 4 (Note: In the discussion below, the symbol d represents a partial derivative)

 $dL(R,T) = \frac{dL(R,T)}{dR} + \frac{dL(R,T)}{dT}$

dL = $[4\pi (2) R \sigma T^{4}] dR + [4\pi (4) R2\sigma T^{3}] dT$

 $dL = 8 \pi R \sigma T^4 dR + 16 \pi R^2 \sigma T^3 dT$

To get percentage changes, divide both sides by L = $4 \pi R^2 \sigma T^4$

dL	8π RσT ⁴		16 π R ² σ T ³	
=	dR	+	C	Τt
L	$4 \pi R^2 \sigma T^4$		4 π R ² σ T ⁴	

Then dL/L = 2 dR/R + 4 dT/T so for the values given, dL/L = 2 (0.10) + 4 (0.05) = 0.40The star's luminosity will increase by 40%.

Since dL/L = 2 dR/R + 4 dT/T, we can obtain no change in L if 2 dR/R + 4 dT/T = 0. This means that 2 dR/R = -4 dT/T and so, -0.5 dR/R = dT/T. The luminosity of a star will remain constant if, as the temperature decreases, its radius increases.

Example. For Antares, its original luminosity is 71,000 L(sun) or 2.5 x 10^{38} ergs/sec. If I increase its radius by 10% from 4.9 x 10^8 km to 5.4 x 10^8 km, its luminosity will remain the same if its temperature is decreased by dT/T = 0.5 x 0.10 = 0.05 which will be 3500 x 0.95 = 3,325 K so L(ergs/sec) = 0.00071 x (5.4 x 10^8 km x 10^5 cm/km)² (3325)⁴ = **2.5 x 10^{38} ergs/sec**