
11.1.1 An Introduction to Sequences and Series 

  The spectrum of the element 
hydrogen is shown to the left. The dark 
‘spectral’ lines that make-up the fingerprint 
of hydrogen only exist at specific 
wavelengths. This allows astronomers to 
identify this gas in many different bodies in 
the universe.  
 The energy corresponding to each 
line follows a simple mathematical series 
because at the atomic-scale, energy 
comes in the form of specific packets of 
light energy called quanta. 
  

 The Lyman Series of hydrogen lines  is determined by the term relation: 
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where n is the energy level, which is a positive integer from 1 to infinity, and En is the 
energy in electron Volts (eV) between  level n and then lowest ‘ground state’ level 
n=1. En determines the energy of the light emitted by the hydrogen atom when an 
electron loses energy by making a jump from  level n to the ground state level. 
 
Problem 1 – Compute the energy in eV of the first six spectral lines for the hydrogen 
atom using En. 
 
 
 
 
 
 
 
 
Problem 2 – Suppose an electron jumped from an energy level of n=7 to a lower 
level where n = 3. What is the absolute magnitude of the energy difference between 
level n = 3 and level n = 7? 
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Answer Key 11.1.1 
 Problem 1 – Compute the energy in eV of the first six spectral lines for the hydrogen 

atom using the formula for En. 
 
Answer:    Example:  E2 = 13.7 (1-1/4) = 13.7 x ¾  = 10.3 eV. 
                                  E2 = 10.3 eV   
                                  E3 = 12.2  eV 
                                  E4 = 12.8 eV 
                                  E5 = 13.2 eV 
                                  E6 = 13.3 eV 
                                  E7 = 13.4 eV 
 
 
 
 
Problem 2 – Suppose an electron jumped from an energy level of n=7 to a lower level 
where n = 3. What is the absolute magnitude of the energy difference between level n 
= 3 and level n = 7? 
 
Answer:   E3 = 12.2 eV and E7 = 13.4 eV so E7-E3 = 1.2 eV 
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11.1.2 An Introduction to Sequences and Series 

  Long before the planet Uranus was 
discovered in 1781, it was thought that 
their distances from the sun might have to 
do with some mathematical relationship. 
Many proposed distance laws were 
popular as early as 1715. 
 
 Among the many proposals was one 
developed by Johann Titius in 1766 and 
Johann Bode 1772 who independently 
found a simple series progression that 
matched up with the planetary distances 
rather remarkably. 

Problem 1 – Compute the first eight terms, n=0 through n=7, in the Titius-Bode Law 
whose terms are defied by Dn = 0.4 + 0.3*2

n
 where n is the planet number beginning 

with Venus (n=0). For example, for Neptune, N = 7 so Dn = 0.4 + 0.3 (128) = 38.8 
AU.  
 
 
 
 
 
 
 
 
 
 
 
 
Problem 2 – A similar series can be determined for the satellites of Jupiter, called 
Dermott’s Law, for which each term is defined by Tn = 0.44 (2.03)n and gives the 
orbit period of the satellite in days  What are the orbital periods for the first six 
satellites of Jupiter? 
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Answer Key 11.1.2 
 Problem 1 – Compute the first eight terms in the Titius-Bode Law whose terms are 

defied by Dn = 0.4 + 0.3*2
n

 where n is the planet number beginning with Venus (n=0). 
For example, for Neptune, N = 7 so Dn = 0.4 + 0.3 (128) = 38.8 AU.  
 
Answer:  For n = 0, 1, 2, 3, 4, 5, 6 and 7 the distances are  
Venus:      d0 = 0.7     actual planet distance =    0.69 
Earth:       d1 = 1.0      actual planet distance =   1.0 
Mars:        d2 = 1.6     actual planet distance =    1.52 
Ceres:      d3 = 2.8     actual planet distance =    2.77 
Jupiter:     d4 = 5.2     actual planet distance =    5.2 
Saturn:     d5 = 10.0   actual planet distance =    9.54 
Uranus:    d6 = 19.6   actual planet distance =  19.2 
Neptune:  d7 = 38.8   actual planet distance =  30.06 
 
Note: Ceres is a large asteroid not a planet. 
 
 
Problem 2 – A similar series can be determined for the satellites of Jupiter, called 
Dermott’s Law, for which each term is defined by Tn = 0.44 (2.03)n and gives the orbit 
period of the satellite in days  What are the orbital periods for the first six satellites of 
Jupiter? 
 
Answer:  T0 =   0.44  days 
               T1 =   0.89  days 
               T2 =   1.81  days 
               T3 =   3.68  days 
               T4 =   7.47  days 
               T5 = 15.17  days 
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11.2.1 Arithmetic Sequences and Series 

 
 

 Arithmetic series 
appear in many different 
ways in astronomy and space 
science. The most common is 
in determining the areas 
under curves.  
 
 For example, an 
arithmetic series is formed 
from the addition of the 
rectangular areas an in the 
figure to the left. 

 Imagine a car traveling at a speed of 11 meters/sec and wants to accelerate 
smoothly to 22 meters/sec to enter a freeway. As it accelerates, its speed changes 
from 11 m/sec at the first second, to 12 m/sec after the second second and 13 m/sec 
after the third second and so on. 
 
 
Problem 1 – What is the general formula for the Nth term in this series for Vn where 
the first term in the series, V1 = 11 m/sec? 
 
 
 
 
Problem 2 – What is the value of the term V8 in meters/sec? 
 
 
 
Problem 3 – For what value of N will Vn = 22 meters/sec? 
 
 
 
Problem 4 – What is the sum, S12, of the first 12 terms in the series? 
 
 
 
Problem 5 – If the distance traveled is given by D = S12 x T where T is the time 
interval between each term in the series, how far did the car travel in order to reach 
22 meters/sec? 
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Answer Key 11.2.1 
 Problem 1 – What is the general formula for the Nth term in this series for Vn where 

V1 = 11 m/sec? 
 
Answer:  Vn = 10 + 1.0n 
 
 
 
Problem 2 – What is the value of the term V8 in meters/sec? 
 
Answer:  V8 = 10 + 1.0 *(8)  so V8 = 18.0 m/sec 
 
 
 
Problem 3 – For what value of N will Vn = 22 meters/sec? 
 
Answer:    22 = 10 + 1.0 N   so N = 12 
 
 
 
Problem 4 – What is the sum, S12, of the first 12 terms in the series? 
 
Answer:   
The first 12 terms in the series are: 
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 
 
The sum of an arithmetic series is given by Sn = n (a1 + an)/2 
So for n = 12, a1 = 11  and a12 = 22  we have S12 = 211 m/sec. 
 
 
 
Problem 5 – If the distance traveled is given by D = S12 x T where T is the time 
interval between each term in the series, how far did the car travel in order to reach 22 
meters/sec? 
 
Answer: In the series for Vn, the time interval between terms is 1.0 seconds. Since S12 
= 211 m/sec  we have D = 211 m/sec x 1.0 sec so D = 211 meters. 
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11.2.2 Arithmetic Sequences and Series 

 The $150 million Deep Space 1 
spacecraft launched on October 22, 1998 
used an ion engine to travel from Earth to 
the Comet Borrelly. It arrived on 
September 22, 2001.   
 By ejecting a constant stream of 
xenon atoms into space, at speeds of 
thousands of kilometers per second, the 
new ion engine could run continuously for 
months. This allowed the spacecraft to 
accelerate to speeds that eventually could 
exceed the fastest rocket-powered 
spacecraft. 

Problem 1 – The Deep Space 1 ion engine produced a constant acceleration, 
starting from a speed of 44,000 km/hr, reaching a speed of 56,060 km/hr as it passed 
the comet 36 months later. The series representing the monthly average speed of 
the spacecraft can be approximated by a series based upon its first 7 months of 
operation given by: 
 
n 1 2 3 4 5 6 7 

Vn
44,000 44,335 44,670 45,005 45,340 45,675 46,010 

 
What is the general formula for Vn? 
 
 
 
Problem 2 –  Suppose the Deep Space I ion engine could be left on for 30 years! 
What would be the speed of the spacecraft at that time? 
 
 
 
 
Problem 3 – The sum of an arithmetic series is given by Sn = n (a1 + an)/2. What is 
the sum, S36, of the first 36 terms of this series? 
 
 
 
 
Problem 4 – The total distance traveled is given by D = S36 x T where T is the time 
between series terms in hours. How far did the Deep Space 1 spacecraft travel in 
reaching Comet Borrelly? 
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Answer Key 11.2.2 
 Problem 1 – The Deep Space 1 ion engine produced a constant acceleration, starting 

from a speed of 44,000 km/hr, reaching a speed of 56,060 km/hr as it passed the 
comet 36 months later. The series representing the monthly average speed of the 
spacecraft can be approximated by a series based upon its first 7 months of operation 
given by: 
 
n 1 2 3 4 5 6 7 

Vn
44,000 44,335 44,670 45,005 45,340 45,675 46,010 

 
What is the general formula for Vn? 
 
Answer:  Vn = 44,000 + 335(n-1) 
 
 
 
Problem 2 –  Suppose the Deep Space I ion engine could be left on for 30 years! 
What would be the speed of the spacecraft at that time? 
 
Answer:  30 years = 30 x 12 = 360 months so the relevant term in the series is V360 
which has a value of V360 = 44,000 + 335x(360-1)  so V360 =  164,265 
kilometers/hour. 
 
 
 
Problem 3 – What is the sum, S36, of the first 36 terms of this series? 
Answer:   V36 =  44,000 +  11,725 = 55,725 km/hour. Then S36 = 36 (44000 + 
55,725)/2  so S36 =  1,795,050 kilometers/hour. 
 
 
 
Problem 4 – The total distance traveled is given by D = S36 x T where T is the time 
between series terms in hours. How far did the Deep Space 1 spacecraft travel in 
reaching Comet Borrelly if there are 30 days in a month? 
 
Answer:  The time between each series term is 1 month which equals 30 days x 
24hours/day =  720 hours.  The total distance traveled is then  
 
D = 1,795,050 km/hr x 720 hours 
 
D = 1,292,436,000 kilometers. 
 
Note, this path was a spiral curve between the orbit of Earth and the comet. During this 
time, it traveled a distance equal to 8.7 times the distance from the Sun to Earth! 
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11.3.1 Geometric Sequences and Series 

 

 When light passes through a dust 
cloud, it decreases in intensity. This 
decrease can be modeled by a geometric 
series where each term represents the 
amount of light lost from the original beam 
of light entering the cloud. 
 
 The image to the left shows the dark 
cloud called Barnard 68 photographed by 
astronomers at the ESO, Very Large 
Telescope observatory. The dust cloud is 
about 500 light years from Earth and about 
1 light year across. 

Problem 1 – A dust cloud causes starlight to be diminished by 1% in intensity for 
each 100 billion kilometers that it travels through the cloud. If the initial starlight has a 
brightness of  B1 = 350 lumens, what is the geometric series that defines its 
brightness? 
 
 

 

 

 

Problem 2 – What are the first 8 terms in this series for the brightness of the light? 
 
 
 
 
 
 
 
Problem 3 - How far would the light have to penetrate the cloud before it loses 50% 
of its original intensity? 
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Answer Key 11.3.1 
 Problem 1 – A dust cloud causes starlight to be diminished by 1% in intensity for each 

100 billion kilometers that it travels through the cloud. If the initial starlight has a 
brightness of  B1 = 350 lumens, what is the geometric series that defines its 
brightness? 
 
Answer:  B1 = 350 and r = 0.01 so if each term represents a step of 100 billion km in 

distance, the series is     BBn = 350 (0.99)
n-1

 

 

 

Problem 2 – What are the first 8 terms in this series for the brightness of the light? 
 
Answer: Calculate Bn for n = 1, 2, 3, 4, 5, 6, 7, 8 
 
N 1 2 3 4 5 6 7 8 
Bn 350 346 343 340 336 333 330 326 
 
 
 
 
 
Problem 3 - How far would the light have to penetrate the cloud before it loses 50% of 
its original intensity? 
 
Answer: Find the term number for which Bn = 0.5*350 =  175. Then 

175 = 350 (0.99)
n-1 

   solve for n using logarithms: 
 
Log(175) = Log(350) + (n-1) log(0.99)  
 
    so    n-1 =  (log(175) – Log(350))/log(0.99) 
and so n-1 =  68.96  
       or n = 68. 
 
Since the distance between each term is 100 billion km, the penetration distance to 
half-intensity will be 68 x 100 billion km = 6.8 trillion kilometers.  
 
Note: 1 light year = 9.3 trillion km, the distance is just under 1 light year.  

Space Math                                http://spacemath.gsfc.nasa.gov 
 



11.4.1 Infinite Geometric Series 

 

 The star field shown above was photographed by NASA’s WISE satellite 
and shows thousands of stars, and represents an area of the sky about the size 
of the full moon. Notice that the stars come in many different brightnesses. 
Astronomers describe the distribution of stars in the sky by counting the number 
in various brightness bins.   
 Suppose that after counting the stars in this way, an astronomer 
determines that the number of the can be modeled by an infinite geometric series: 
BBm = 100 a where a is a scaling number between 1/3 and 1/2. The series 
term index, m, is related to the apparent magnitude of the stars in the star field 
and ranges from m:[1 to +infinity]. 

m-1 

 
Problem 1 –What are the first 7 terms in this series for a=0.398? 
 
 
 
Problem 2 - What is the sum of the geometric series, Bm , for A) a=0.333?   B) 
a=0.398? C) a=0.5? 
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Answer Key 11.4.1 
 Problem 1 – Suppose that the brightness of this field can be approximately given by 

the geometric series   Bm = 100 a
m-1 

where a is a number between 1/2 and 1/3. The 
series term index, m, is related to the apparent magnitude of the stars in the star field 
and ranges from m:[1 to +infinity]. What are the first 7 terms in this series for a=0.398? 
 
Answer:  a = 0.398 then: 
m 1 2 3 4 5 6 7 
Bm 100 40 16 6.3 2.5 1.0 0.4 
 
 
 
 
 
Problem 2 - What is the sum of this geometric series for A) a=0.333?   B) a=0.398? C) 
a=0.5? 
 
Answer:  A) The common ratio is 0.333 and the first term has a value of B1 = 100, so B 
= 100 / (1-0.333)  and so B= 150.   
 
B) The common ratio is 0.398 and the first term has a value of B1 = 100, so B = 100 / 
(1-0.398)  and so B= 166.  
 
C) The common ratio is 0.50 and the first term has a value of B1 = 100, so B = 100 / 
(1-0.50)  and so B= 200.   
 
 
 
Note:  Normally, star counts are always referred to a specific magnitude system since 
the brightness of stars at different wavelengths varies.  
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11.4.2 Infinite Geometric Series 

 Rockets work by throwing mass out 
their ends to produce ‘thrust’, which moves 
the rocket forward.  
 
 As fuel mass leaves the rocket, the 
mass of the rocket decreases and so the 
speed of the rocket steadily increases as 
the rocket becomes lighter and lighter. 
 
 An interesting feature of all rockets 
that work in this way is that the maximum 
attainable speed of the rocket is 
determined by the Rocket Equation, which 
can be understood by using an infinite 
geometric series. 
  

 

Problem 1 – The Rocket Equation can be approximated by the series V = V1 a
n-1

, 
where a is a quantity that varies with the mass ratio of the surviving payload mass, 
m, to the initial rocket mass, M. For a rocket in which the payload mass is 10% of the 
total fueled rocket mass, a = 0.56.  What are the first 5 terms in the equation for the 
rocket speed, V, if the exhaust speed is V1 = 2,500 meters/sec? 
 
 
 
 
Problem 2 – The partial sums of the series, S1, S2, S3, …,  reflect the fact that, as 
the rocket burns fuel, the mass of the rocket decreases, so the speed will increase. 
For example, after two seconds, the second time interval, S2 = V1 + V2 = 2,500 + 
1,400 = 3,900 m/sec. After three seconds, the speed is S3 = 2,500 + 1,400 + 784 = 
4,684 m/sec etc.   What is the speed of the rocket after A) 15 seconds?  B) 35 
seconds?   
 
 
 
 
Problem 3 – The maximum speed of the payload is given by the limit to the sum of 
the series for V. What is the sum of this infinite series for V in meters/sec?  
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Answer Key 11.4.2 
 Problem 1 – The Rocket Equation can be approximated by the series V = V0 a

n
, 

where a is a quantity that varies with the mass ratio of the surviving payload mass, m, 
to the initial rocket mass, M. For a rocket in which the payload mass is 10% of the total 
fueled rocket mass, a = 0.56.  What are the first 5 terms in the equation for the rocket 
speed, V, if the exhaust speed is 2,500 meters/sec? 
 
Answer: V1 = 2500 (0.56)0 = 2,500 m/sec 

              V2 = 2500 (0.56)1 = 1,400 m/sec 

              V3 = 2500 (0.56)2 =    784 m/sec 

              V4 = 2500 (0.56)3 =    439 m/sec 

              V5 = 2500 (0.56)4 =    246 m/sec 
 
So the sequence is V=2,500 + 1,400 + 784 + 439 + 246 + … 
 
 
 
 
Problem 2 – The partial sums of the series, S1, S2, S3, …,  reflect the fact that, as the 
rocket burns fuel, the mass of the rocket decreases, so the speed will increase. For 
example, after two seconds, the second time interval, S2 = V1 + V2 = 2,500 + 1,400 = 
3,900 m/sec. After three seconds, the speed is S3 = 2,500 + 1,400 + 784 = 4,684 
m/sec etc.   What is the speed of the rocket after A) 15 seconds?  B) 35 seconds?   
 
 
Answer: A) Recall that the sum of a geometric series is given by Sn = a(1-rn)/(1 – r) 
So A)  r = 0.56, a = 2500,  n = 15 and so  
          S15 = 2500 (1-(0.56)

15
)/(1 – 0.56)  

          S = 5,681 meters/sec.  
     B) n = 35 so  S35 = 2500 (1-(0.56)

35
)/(1-0.56)  

          S = 5,682 meters/sec. 
 
 
Problem 3 – The maximum speed of the payload is given by the limit to the sum of the 
series for V. What is the sum of this infinite series for V in meters/sec?  
 
Answer:  S = a/(1-r) =  2500/(1-0.56) = 5,682 meters/sec. 
 
Note: This speed is equal to 20,500 km/hour. 
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11.5.1 Recursive Rules for Sequences 

 

 This spherical propellant tank is 
an important component of testing for 
the Altair lunar lander, an integral part of 
NASA's Constellation Program. It will be 
filled with liquid methane and extensively 
tested in a simulated lunar thermal 
environment to determine how liquid 
methane would react to being stored on 
the moon.   
 The volume of a sphere is a 
mathematical quantity that can be 
extended to spaces with different 
numbers of dimensions. 
 The mathematical formula for the 
volume of a sphere in a space of N 
dimensions is given by the recursion 
relation 

              
22( ) ( 2)RV N V N

N
π

= −  

  
For example, for 3-dimensional space, N 
= 3 and since from the table to the left, 
V(N-2) = V(1) = 2R, we have the usual 
formula 

              34(3)
3

V R

Dimension Formula Volume 
0 1 1.00 
1 2R 2.00 
2 π 2R 3.14 
 

3 
4πR3  
3

 
4.19 

 
4 

 
 
 

 

 
5 

 
 
 

 

 
6 

 
 
 

 

 
7 

 
 
 

 

 
8 

 
 
 

 

 
9 

 
 
 

 

 
10 

 
 
 

 

π=  

 
Problem 1 - Calculate the volume 
formula for 'hyper-spheres' of dimension 
4 through 10 and fill-in the second 
column in the table. 
 
Problem 2 - Evaluate each formula for 
the volume of a sphere with a radius of 
R=1.00 and enter the answer in column 
3. 
 
Problem 3 - Create a graph that shows 
V(N) versus N. For what dimension of 
space, N,  is the volume of a 
hypersphere its maximum possible 
value? 
 
Problem 4 - As N increases without 
limit, what is the end behavior of the 
volume of an N-dimensional 
hypersphere? 
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11.5.1 Answer Key 

 
Dimension Formula Volume 

0 1 1.00 
1 2R 2.00 
2 πR2 3.14 
 

3 
34

3
Rπ  

 
4.19 

 
4 

2 4

2
Rπ

 
 

4.93 

 
5 

2 58
15

Rπ
 

 
5.26 

 
6 

3 6

6
Rπ

 
 

5.16 

 
7 

3 716
105

Rπ
 

 
4.72 

 
8 

4 8

24
Rπ

 
 

4.06 

 
9 

4 932
945

Rπ
 

 
3.30 

 
10 

5 10

120
Rπ

 

 

 
2.55 

Problem 1 -   Answer for N=4: 
 

2π R 2
V (4) = (4 − 2)

4

2π R 2
V (4) = (2 )

4  

2π R 2
V (4) = (π 2 )

4

π 2 4RV (4) =
2

V

V

R

 
Problem 2 -  Answer for N=4: 
V(4) = (0.5)(3.141)2 = 4.93. 
 
Problem 3 - The graph to the left 
shows that the maximum hypersphere 
volume occurs for spheres in the fifth 
dimension (N=5). Additional points 
have been calculated for N=11-20 to 
better illustrate the trend. 
 
Problem 4 - In the limit for spaces with 
very large dimensions, the hypersphere 
volume approaches zero! 

Hypersphere volume

6

5

4

)
N

V(

3

2

1

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
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