NASA’s new mission to Mars called InSight will be launched in March, 2016. It will land on September 20, 2016 in a region of Mars located near the equator and deploy a seismographic station to study the interior of Mars.

To provide the electricity it needs, the lander will deploy two solar panels, each shaped like a regular, 10-sided polygon called a decagon.

In a regular decagon, the lengths of each of the 10 sides, \(a\), are equal. For the two InSight lander solar panels:

\[
a = 0.62 \text{ meters}, \\
r = 0.95 \text{ meters}, \\
R = 1.0 \text{ meters.}
\]

Problem 1 – What is the measure of the interior angle, \(y\) for a regular decagon?

Problem 2 – An isosceles triangle is formed by the base \(a\) and side length \(R\). What is the length, \(r\), in terms of \(a\) and \(R\)?

Problem 3 – What is the area of the isosceles triangle in Problem 2?

Problem 4 – What is the area of the regular decagon in terms of \(a\) and \(r\)?

Problem 5 - Calculate the area of one InSight solar panel in meter\(^2\).

Problem 6 - What is the estimated area of one solar panel by using the inscribed circle with a radius of \(r\) and the circumscribed circle with a radius \(R\)?

Problem 7 – To two significant figures, if the solar panels produce 75 watts/m\(^2\) of electricity at the distance of Mars from the sun, what is the total power produced by the two solar panels using either area method?

Problem 1 – What is the measure of the interior angle, \(y \) for a regular decagon?

Answer: \(y = \frac{360}{10} = 36^\circ \).

Problem 2 – An isosceles triangle is formed by the base \(a \) and side length \(R \). What is the length, \(r \), in terms of \(a \) and \(R \)?

Answer: The segment with the length, \(r \), is called the apothem and is the perpendicular bisector of the side with the length \(a \), so from the Pythagorean Theorem we get \(r = \left(R^2 - \left(\frac{a}{2}\right)^2 \right)^{1/2} \).

Note for the InSight dimensions: \(0.95 = (1 - 0.096)^{1/2} \)

Problem 3 – What is the area of the isosceles triangle in Problem 2?

Answer: \(A = 2 \times \frac{1}{2} \left(\frac{a}{2}\right) \times r \quad \text{so} \quad A = \frac{a r}{2} \)

For the InSight solar panel: \(A = 0.62 \times 0.95/2 = 0.29 \text{ m}^2 \).

Problem 4 – What is the area of the regular decagon in terms of \(a \) and \(r \)?

Answer: \(A = 10 \times \frac{ar}{2} \quad \text{so} \quad A = 5ar \).

Problem 5 - Calculate the area of one InSight solar panel in \(\text{meter}^2 \).

Answer: For the Insight solar panel, \(A = 5 \times (0.62)(0.95) = 2.95 \text{ m}^2 \).

Problem 6 - What is the estimated area of one solar panel by using the inscribed circle with a radius of \(r \) and the circumscribed circle with a radius \(R \)?

Answer: Take the average areas of the inscribed and circumscribed circles to get \(A = 0.5 \pi \left(R^2 + r^2 \right) \). For Insight, \(A = 0.5 \times 3.141 \times (1 + 0.90) = 2.98 \text{ m}^2 \).

Problem 7 – To two significant figures, if the solar panels produce 75 watts/\(\text{m}^2 \) of electricity at Mars, what is the total power produced by the two solar panels using either area method?

Answer: To 2 SF, the areas are both 3.0 \(\text{m}^2 \), so \(P = 2 \text{ panels} \times 75 \text{ w/}\text{m}^2 \times 3.0 \text{ m}^2 = 450 \text{ watts} \).

Space Math \hspace{3cm} \text{http://spacemath.gsfc.nasa.gov}