

Image of craters on Mercury taken by the MESSENGER spacecraft.

Because things change in the universe, astronomers often have to work with mathematical quantities that describe complex rates.

Definition: A rate is the ratio of two quantities with different units.

In the problems below, convert the indicated quantities into a rate.

Example: 15 solar storms in 2 weeks becomes the rate:
$R=\frac{15 \text { solar storms }}{-----------------} \begin{gathered}15\end{gathered}$
$\mathbf{R}=\begin{gathered}\mathbf{7} \text { solar storms/week. } \\ \text { or } 7 \text { solar storms per week. }\end{gathered}$

Problem 1-15 meteor impacts in 3 months.
Problem 2-2,555 days in 7 years
Problem 3-1,000 atomic collisions in 10 seconds
Problem 4-36 galaxies in 2 two clusters
Problem 5-1600 novas in 800 years
Problem 6-416 gamma-ray bursts spotted in 52 weeks
Problem 7-3000 kilometers traveled in 200 hours.
Problem 8-320 planets orbiting 160 stars.
Problem 9-30 Joules of energy consumed in 2 seconds

Compound Units:

Problem 10-240 craters covering 8 square miles of area
Problem 11-16,000 watts of energy collected over 16 square meters.
Problem 12-380 kilograms in a volume of 20 cubic meters
Problem 13-6 million years for 30 magnetic reversals
Problem 14-1,820 Joules over 20 square meters of area
Problem 15-A speed change of 50 kilometers/sec in 10 seconds.

Scientific Notation:

Problem 16-3 310^{13} kilometers traveled in 3×10^{7} seconds.
Problem 17-70,000 tons of gas accumulated over 20 million square kilometers
Problem 18-360,000 Newtons of force over an area of 1.2×10^{6} square meters
Problem 19-1.5 $\times 10^{8}$ kilometers traveled in 50 hours
Problem 20-4.5 $\times 10^{5}$ stars in a cluster with a volume of 1.5×10^{3} cubic lightyears

Answer Key

Problem 1-15 meteor impacts in 3 months. = 5 meteor impacts/month.
Problem 2-2,555 days in 7 years = 2,555 days $/ 7$ years $=365$ days/year
Problem 3-1,000 atomic collisions in 10 seconds = 100 atomic collisions/second
Problem 4-36 galaxies in 2 two clusters = $\mathbf{1 8}$ galaxies/cluster
Problem 5-1600 novas in 800 years $=\mathbf{2}$ novas/year
Problem 6-416 gamma-ray bursts spotted in 52 weeks = $\mathbf{8}$ gamma-ray bursts/week
Problem 7-3000 kilometers traveled in 200 hours. $=15$ kilometers/hour
Problem 8-320 planets orbiting 160 stars. $=2$ planets/star
Problem 9-30 Joules of energy consumed in 2 seconds = 15 Joules/second

Compound Units:

Problem 10-240 craters covering 8 square miles of area $=30$ craters $/ \mathrm{km}^{2}$
Problem 11-16,000 watts of energy collected over 16 square meters. $=1000$ watts/km ${ }^{2}$
Problem 12-380 kilograms in a volume of 30 cubic meters $=19$ kilograms $/ \mathrm{m}^{3}$ Problem 13-6 million years for 30 magnetic reversals $=\mathbf{2 0 0 , 0 0 0}$ years/reversal
Problem 14-1,820 Joules over 20 square meters of area = 91 Joules $/ \mathrm{m}^{2}$
Problem 15 - A speed change of 50 kilometers $/ \mathrm{sec}$ in 10 seconds. $=\mathbf{5} \mathbf{~ k m} / \mathbf{s e c}^{\mathbf{2}}$

Scientific Notation:

Problem 16-3 3×10^{13} kilometers traveled in 3×10^{7} seconds.
$=1.0 \times 10^{6}$ kilometers $/ \mathrm{sec}$
Problem 17-70,000 tons of gas accumulated over 20 million square kilometers
$=70,000$ tons $/ 20$ million $\mathrm{km}^{2}=\mathbf{0 . 0 0 3 5}$ tons $/ \mathrm{km}^{2}$
Problem 18-360,000 Newtons of force over an area of 1.2×10^{6} square meters

$$
=392,000 \text { Newtons } / 1,200,000 \mathrm{~m}^{2}=0.3 \text { Newtons } / \mathrm{m}^{2}
$$

Problem 19-1.5 $\times 10^{8}$ kilometers traveled in 50 hours
$=1.5 \times 10^{8} \mathrm{~km} / 50 \mathrm{hrs}=3$ million $\mathrm{km} / \mathrm{hr}$
Problem 20-4.5 $\times 10^{5}$ stars in a cluster with a volume of 1.5×10^{3} cubic lightyears $=300$ stars/cubic lightyear

