Deep Impact - Closing in on Comet 103P/Hartley 2

This image was taken by the Deep Impact spacecraft on September 20 as it approaches Comet Hartley 2 from a distance of 46 million kilometers.

On November 4, the spacecraft will approach to within 700 kilometers of the surface of the comet.

The image area is 0.29 degrees on a side, and the nucleus of the comet is about 1 kilometer in diameter. The comet can be seen as the fuzzy spot near the center.

Whenever you look at a distant object, you see the object's angular size not its actual physical size. There is a simple formula that relates the actual size and distance to an object, to its apparent angular size:

$$
\operatorname{Tan}\left(\frac{\theta}{2}\right)=\frac{d}{2 R}
$$

where d is the object's width or diameter in kilometers, and R is its distance from the obeserver in kilometers. For example, a DVD disk ($\mathrm{d}=12 \mathrm{~cm}$) held at arms-length $(R=24 \mathrm{~cm})$ will subtend an angle of $\theta=28$ degrees.

Problem 1 - Deep Impact will pass to within 700 km of the nucleus. How big will the comet nucleus appear to the Deep Impact spacecraft if its diameter is 1 kilometer?

Problem 2 - The Deep Impact High-Resolution Imager (HRI) has a format of 1024 x 1024 pixels and a field of view of 0.118 degrees. A single pixel sees an angular field of $0.118 \mathrm{deg} / 1024 \mathrm{pix}=0.000115$ degrees. At a distance of 700 km , what linear distance will a pixel resolution of 0.000115 degrees represent?

Problem 3 - How many pixels across will the comet nucleus appear in the image taken at closest approach with the HRI?

Problem 1 - Deep Impact will pass to within 700 km of the nucleus. How big will the comet nucleus appear to the Deep Impact spacecraft if its diameter is 1 kilometer?

Answer: $\mathrm{d}=1$ kilometer, and $\mathrm{R}=700 \mathrm{~km}$, so solving for θ in the formula we have $\operatorname{Tan}(\theta / 2)=\frac{d}{2 R}$ so $\operatorname{Tan}(\theta / 2)=1$ kilometer $/(2 \times 700)$, and so $\theta=\mathbf{0 . 0 8}$ degrees

Problem 2 - The Deep Impact High-Resolution Imager (HRI) has a format of 1024 x 1024 pixels and a field of view of 0.118 degrees. A single pixel sees an angular field of $0.118 \mathrm{deg} / 1024 \mathrm{pix}=0.000115$ degrees. At a distance of 700 km , what linear distance will a pixel resolution of 0.000115 degrees represent?

$$
\begin{aligned}
& \text { Answer: } \operatorname{Tan}(0.000115)=\mathrm{L} / 700 \mathrm{~km} \text { so } \\
& \mathrm{L}=700 \operatorname{Tan}(0.000115) \mathrm{km} \quad \mathrm{~L}=1.4 \text { meters/pixel. }
\end{aligned}
$$

Problem 3 - How many pixels across will the comet nucleus appear in the image taken at closest approach with the HRI?

Answer: The resolution of the imager is 1.4 meters/pixel. The diameter of the nucleus is believed to be about the 1 kilometer, so the comet nucleus will subtend about 1,000 meters $\times(1$ pixel $/ 1.4$ meters $)=714$ pixels. Below is an image taken by the Lunar Reconnaissance Orbiter at a resolution of 1 meter showing the Apollo 11 landing area on the moon. A similar-resolution image will be possible for Comet Hartley 2 using HRII

