STEREO Watches the Sun Kick Up a Storm!

A solar tsunami that occurred in February 13, 2009 has recently been identified in the data from NASA's STEREO satellites. It was spotted rushing across the Sun's surface. The blast hurled a billion-ton CME into space and sent a tsunami racing along the sun's surface. STEREO recorded the wave from two positions separated by 90 degrees, giving researchers a spectacular view of the event. Satellite A (STA) provided a side-view of the explosion, called a Coronal Mass Ejection (CME), while Satellite B (STB) viewed the explosion from directly above. The technical name is "fast-mode magnetohydrodynamic wave" - or "MHD wave" for short. The one STEREO saw raced outward at $560,000 \mathrm{mph}(250 \mathrm{~km} / \mathrm{s}$) packing as much energy as 2,400 megatons of TNT.

Problem 1 - In the lower strip of images, the sun's disk is defined by the mottled circular area, which has a physical radius of 696,000 kilometers. Use a millimeter ruler to determine the scale of these images in kilometers $/ \mathrm{mm}$.

Problem 2 - The white circular ring defines the outer edge of the expanding MHD wave. How many kilometers did the ring expand between 05:45 and 06:15? (Note '05:45' means 5:45 o'clock Universal Time).

Problem 3 - From your answers to Problem 1 and 2, what was the approximate speed of this MHD wave in kilometers/sec?

Problem 4 - Kinetic Energy is defined by the equation K.E. $=1 / 2 \mathrm{mV}^{2}$ where m is the mass of the object in kilograms, and V is its speed in meters/sec. Suppose the mass of the CME was about 1 million metric tons, use your answer to Problem 3 to calculate the K.E., which will be in units of Joules.

Problem 5 - If 1 kiloton of TNT has the explosive energy of 4.1×10^{12} Joules, how many megatons of TNT does the kinetic energy of the tsunami represent?

Problem 1 - In the lower strip of images, the sun's disk is defined by the mottled circular area, which has a physical radius of 696,000 kilometers. Use a millimeter ruler to determine the scale of these images in kilometers/mm.

Answer: The diameter is 31 millimeters ,which corresponds to $2 \times 696,000 \mathrm{~km}$ or $1,392,000$ km . The scale is then $1,392,000 \mathrm{~km} / 31 \mathrm{~mm}=45,000 \mathrm{~km} / \mathrm{mm}$.

Problem 2 - The white circular ring defines the outer edge of the expanding MHD wave. How many kilometers did the ring expand between 05:45 and 06:15? (Note '05:45' means 5:45 o'clock Universal Time).

Answer: From the scale of $45,000 \mathrm{~km} / \mathrm{mm}$, the difference in the ring radii is $12 \mathrm{~mm}-5 \mathrm{~mm}=$ 7 mm which corresponds to $7 \mathrm{~mm} \times(45,000 \mathrm{~km} / 1 \mathrm{~mm})=315,000$ kilometers. Students answers may vary depending on where they defined the outer edge of the ring.

Problem 3 - From your answers to Problem 1 and 2, what was the approximate speed of this MHD wave in kilometers/sec?

Answer: The time difference is 06:15-05:45 = 30 minutes. The speed was about 315,000 $\mathrm{km} / 30$ minutes $=11,000$ kilometers/minute, which is $11,000 \mathrm{~km} /$ minute $\times(1$ minute/60 seconds) $=180$ kilometers/sec.

Problem 4-Kinetic Energy is defined by the equation K.E. $=1 / 2 \mathrm{~m} \mathrm{~V}^{2}$ where m is the mass of the object in kilograms, and V is its speed in meters/sec. Suppose the mass of the CME was about 1 million metric tons, use your answer to Problem 3 to calculate the K.E., which will be in units of Joules.

Answer: The mass of the CME was 1 billion metric tons. There are 1,000 kilograms in 1 metric ton, so the mass was 1.0×10^{12} kilograms. The speed is $180 \mathrm{~km} / \mathrm{sec}$ which is 180,000 meters/sec. The kinetic energy is then about $0.5 \times 1.0 \times 10^{\mathbf{1 2}} \times(180,000)^{2}=1.6 \times 10^{\mathbf{2 2}}$ Joules.

Problem 5 - If 1 kiloton of TNT has the explosive energy of 4.1×10^{12} Joules, how many megatons of TNT does the kinetic energy of the tsunami represent?
Amswer: 1.6×10^{22} Joules $\times\left(1\right.$ kiloton TNT/4.1 $\times 10^{12}$ Joules $)=3.9 \times 10^{9}$ kilotons TNT. Since 1 megaton $=1,000$ kilotons, we have an explosive yield of $3,900,000$ megatons TNT. (Note; this answer differs from the STEREO estimate because the speed is approximate, and does not include the curvature of the sun).

Teacher Note: Additional information, and movies of the event, can be found at the STEREO website: http://stereo.gsfc.nasa.gov/news/SolarTsunami.shtml. Also published in the Astrophysical Journal Letters (ApJ 700 L182-L186)

