

As energy is added to solid matter, it changes its state. The figure to the left shows what happens to water as it changes from solid ice (A to B), to a mixture of cold water and 'ice cubes' (B to C) and then finally to pure liquid water (C to D).

The energy required to change a kilogram of solid ice by one degree Celsius is called the Specific Heat. The energy needed to change a kilogram of solid ice at $0^{\circ} \mathrm{C}$ into 100% liquid water at $0^{\circ} \mathrm{C}$ is called the Latent Heat of Fusion.

Problem 1 - The Specific Heat of ice is 2090 Joules/kg C. How many Joules of energy do you need to raise the temperature of 1 kg of ice from $-20^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ along the path from A to B on the graph?

Problem 2 - The Latent Heat of Fusion for water is 333 Joules/gram. How many Joules of energy do you need to melt all the ice into a pure liquid along the path from B to C on the graph?

Problem 3 - The Specific Heat of liquid water is 4180 Joules/kg C. How much energy is needed to raise the temperature of 100 grams of liquid water to $+60^{\circ} \mathrm{C}$ for a nice warm cup of tea along the path from C to D in the graph?

Problem 1 - The Specific Heat of ice is 2090 Joules/kg C. How many Joules of energy do you need to raise the temperature of 1 kg of ice from $-20^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ along the path from A to B on the graph?

Answer: The temperature difference is $20^{\circ} \mathrm{C}$, so for 1 kg of ice we need 2090 Joules/kgC $\times(1 \mathrm{~kg}) \times\left(20^{\circ} \mathrm{C}\right)=41,840$ Joules.

Problem 2 - The Latent Heat of Fusion for water is 333 Joules/gram. How many Joules of energy do you need to melt all the ice into a pure liquid along the path from B to C on the graph?

Answer: For 1 kilogram of ice ,which equals 1000 grams, we need 333 Joules/gram $\times 1000$ grams $=333,000$ Joules.

Problem 3 - The Specific Heat of liquid water is 4180 Joules/kg C. How much energy is needed to raise the temperature of 100 grams of liquid water to +60 C for a nice warm cup of tea along the path from C to D in the graph?

Answer: 4180 Joules/kgC $\times 0.1$ kg = 418 Joules.

