

Planets have been spotted orbiting hundreds of nearby stars, but this makes for a variety of temperatures depending on how far the planet is from its star and the stars luminosity.

The temperature of the planet will be about

$$
\mathrm{T}=273\left(\frac{(1-\mathrm{A}) \mathrm{L}}{\mathrm{D}^{2}}\right)^{1 / 4}
$$

where A is the reflectivity (albedo) of the planet, L is the luminosity of its star in multiples of the sun's power, and D is the distance between the planet and the star in Astronomical Units (AU), where 1 AU is the distance from Earth to the sun (150 million km). The resulting temperature will be in units of Kelvins. (i.e. 0° Celsius $=+273 \mathrm{~K}$, and Absolute Zero is defined as 0 K).

Problem 1 - Earth is located 1.0 AU from the sun, for which $L=1.0$. What is the surface temperature of Earth if its albedo is 0.4 ?

Problem 2 - At what distance would Earth have the same temperature as in Problem 1 if the luminosity of our sun were increased 1000 times and all other quantities remained the same?

Problem 3 - The recently discovered planet CoRoT-7b (see artist's impression above, from ESA press release), orbits the star CoRoT-7 which is a sun-like star located about 490 light years from Earth in the direction of the constellation Monoceros. If the luminosity of the star is 71% of the sun's luminosity ($L=0.71$) and the planet is located 2.6 million kilometers from its star ($\mathrm{D}=0.017 \mathrm{AU}$) what are the predicted surface temperatures of the day-side of CoRoT-7b for the range of albedos shown in the table below?

Surface Material	Example	Albedo (A)	Surface Temperature (K)
Basalt	Moon	0.06	1892
Iron Oxide	Mars	0.16	
Water+Land	Earth	0.40	
Gas	Jupiter	0.70	

Problem 1 - Earth is located 1.0 AU from the sun, for which $L=1.0$. What is the surface temperature of Earth if its albedo is 0.4 ? Answer: $T=273(0.6)^{1 / 4}=\mathbf{2 4 0} \mathrm{K}$

Note: The equilibrium temperature of Earth is much lower than the freezing point of water. Were it not for the trace gases of carbon dioxide and to a lesser extent water vapor and methane providing 'greenhouse heating' our planet would be unlivable even with an atmosphere!

Problem 2 - At what distance would Earth have the same temperature as in Problem 1 if the luminosity of our sun were increased 1000 times and all other quantities remained the same? Answer: From the formula, $\mathrm{T}=240$ and $\mathrm{L}=1000$ so
$240=273\left(0.6 \times 1000 / D^{2}\right)^{1 / 4}$ and so $\mathbf{D}=5.6$ AU. This is about near the orbit of Jupiter.

Problem 3 - The recently discovered planet CoRoT-7b orbits the star CoRoT-7 which is a sun-like star located about 490 light years from Earth in the direction of the constellation Monoceros. If the luminosity of the star is 71% of the sun's luminosity ($\mathrm{L}=0.71$) and the planet is located 2.6 million kilometers from its star ($D=0.017 \mathrm{AU}$) what are the predicted surface temperatures of the day-side of CoRoT-7b for the range of albedos shown in the table below?

Surface Matarial	Example	Albedo (A)	Surface Temperature (K)
Basalt	Moon	0.06	1892
Iron Oxide	Mars	0.16	1840
Water+Land	Earth	0.40	1699
Gas	Jupiter	0.70	1422

Example: For an albedo similar to that of our Moon:

$$
\begin{aligned}
\mathrm{T} & =273 *\left((1-0.06)^{*} 0.71 /(0.017)^{2}\right)^{25} \\
& =1,892 \text { Kelvin }
\end{aligned}
$$

Note: To demonstrate the concept of Significant Figures, the values for L, D and A are given to 2 significant figures, so the answers should be rounded to 1900, 1800, 1700 and 1400 respectively.

