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The Apollo -11 Lander is revealed by its shadow near the center of this 
image taken by the Lunar Reconnaissance Orbiter  in July, 2009.  Use a 
millimeter ruler to determine the scale of the image, and the sizes and 
distances of various features!  

Space   Math    V 
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 This collection of activities is based on a weekly series of space 
science problems distributed to thousands of teachers during the 2008-
2009 school year. They were intended for students looking for 
additional challenges in the math and physical science curriculum in 
grades 9 through 12. The problems were created to be authentic 
glimpses of modern science and engineering issues, often involving 
actual research data.   
 The problems were designed to be ‘one-pagers’ with a Teacher’s 
Guide and Answer Key as a second page.  This compact form was 
deemed very popular by participating teachers. 
 
 
 
For more weekly classroom activities about astronomy and space visit 
the NASA website,  

http://spacemath.gsfc.nasa.gov
 
To suggest math problem or science topic ideas, contact  the Author,  
Dr. Sten Odenwald at           

Sten.F.Odenwald@nasa.gov 
 
 
 
 
Front and back cover credits: Saturn's Rings (Cassini NASA/ESA); 
Evolution of the Universe (NASA/WMAP); Abell-38 planetary nebula 
(Courtesy Jakoby, KPNO), Space Shuttle Launch (NASA) 
 
 
 
 

This booklet was created by the NRL, Hinode satellite program's  
Education and Public Outreach Project under grant N00173-06-1-G033, 
and an EPOESS-7 education grant, NNH08CD59C through the NASA 

Science Mission Directorate. 
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Note: An extensive, updated, and cumulative matrix of problem numbers, math topics 
and grade levels  is available at     
   http://spacemath.gsfc.nasa.gov/matrix.xls 
 
 
Alignment with  Standards (AAAS Project:2061 Benchmarks). 
 
(3-5) - Quantities and shapes can be used to describe objects and events in the world 
around us. 2C/E1  --- Mathematics is the study of quantity and shape and is useful for 
describing events and solving practical problems. 2A/E1   
 
(6-8) Mathematicians often represent things with abstract ideas, such as numbers or 
perfectly straight lines, and then work with those ideas alone. The "things" from which 
they abstract can be ideas themselves; for example, a proposition about "all equal-sided 
triangles" or "all odd numbers". 2C/M1  
 
(9-12) - Mathematical modeling aids in technological design by simulating how a 
proposed system might behave. 2B/H1 ---- Mathematics provides a precise language to 
describe objects and events and the relationships among them. In addition, mathematics 
provides tools for solving problems, analyzing data, and making logical arguments. 
2B/H3 ----- Much of the work of mathematicians involves a modeling cycle, consisting of 
three steps: (1) using abstractions to represent things or ideas, (2) manipulating the 
abstractions according to some logical rules, and (3) checking how well the results 
match the original things or ideas. The actual thinking need not follow this order. 2C/H2  
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Mathematics Topic Matrix 

Topic Problem      Numbers 
 1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
Inquiry             X  X X         X   X    

Technology,                                rulers 
Numbers,    X X  X   X X X  X    X          X    patterns, 

percentages 
Averages                                

Time, distance,   X      X       X          X      speed 
Areas and             X     X  X X           volumes 

Scale             X          X X X X X  X X  drawings 
Geometry                                

Probability,             X X X   X    X          odds 
Scientific                    X X X X      X    Notation 

Unit X  X    X               X      X    Conversions 
Fractions      X                  X X  X     

Graph or Table X X               X               Analysis 
Solving for X    X X  X X           X             

Evaluating Fns                   X  X          X
Modeling X                              X

Trigonometry                                
Integration                               X

Differentiation                               X
Limits                                

 



Space  Math                                                      http://spacemath.gsfc.nasa.gov 

Mathematics Topic Matrix (cont'd) 

Topic Problem      Numbers 
 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 6 6

2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
Inquiry X          X                    

Technology,                               rulers 
Numbers,            X       X   X   X      patterns, 

percentages 
Averages                               

Time, distance,    X      X                    Xspeed 
Areas and               X X      X         volumes 

Scale                 X             Xdrawings 
Geometry  X X             X       X        

Probability,                               odds 
Scientific            X  X  X X   X    X   X X X    Notation 

Unit           X        X       X      Conversions 
Fractions                      X         

Graph or Table    X                    X X     XAnalysis 
Solving for X         X               X       

Evaluating Fns X    X X X  X    X  X   X     X X  X  X X  
Modeling X X X      X  X    X     X     X      

Trigonometry                    X           
Integration X X X    X         X               

Differentiation X  X  X X  X X    X X              X   
Limits                     X          
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Mathematics Topic Matrix (cont'd) 

Topic Problem      Numbers 
 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8       

3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 
Inquiry        X                        

Technology,                                rulers 
Numbers, X      X X X X                      patterns, 

percentages 
Averages X                               

Time, distance,     X      X                     speed 
Areas and             X            X       volumes 

Scale     X   X                 X       drawings 
Geometry     X                           

Probability,                                odds 
Scientific   X X   X            X  X            Notation 

Unit    X       X       X   X           Conversions 
Fractions         X     X        X X X        

Graph or Table           X X X                   Analysis 
Solving for X               X X X  X             

Evaluating Fns      X         X     X            
Modeling   X                             

Trigonometry                                
Integration                                

Differentiation                                
Limits                                

 



How to use this book 

 Teachers continue to look for ways to make math meaningful by providing students 
with problems and examples demonstrating its applications in everyday life.  Space Math 
offers math applications through one of the strongest motivators-Space. Technology 
makes it possible for students to experience the value of math, instead of just reading 
about it. Technology is essential to mathematics and science for such purposes as “access 
to outer space and other remote locations, sample collection and treatment, measurement, 
data collection and storage, computation, and communication of information.”  3A/M2 
authentic assessment tools and examples.  The NCTM standards include the statement 
that "Similarity also can be related to such real-world contexts as photographs, models, 
projections of pictures" which can be an excellent application for all of the Space Math 
applications. 
 
 This book is designed to be used as a supplement for teaching mathematical 
topics.  The problems can be used to enhance understanding of the mathematical concept, 
or as a good assessment of student mastery.   
 
 An integrated classroom technique provides a challenge in math and science 
classrooms, through a more intricate method for using Space Math V. Read the scenario 
that follows: 
 
Ms. Green decided to pose a new activity using Space Math for her students.  She 
challenged each student team with math problems from the Space Math V book.  She 
copied each problem for student teams to work on.  She decided to have the students 
develop a factious space craft.  Each team was to develop a set of criteria that included 
reasons for the research, timeline and budget.  The student teams had to present their 
findings and compete for the necessary funding for their space craft.  The students were to 
use the facts available in the Space Math V book and images taken from the Space 
Weather Media Viewer, http://sunearth.gsfc.nasa.gov/spaceweather/FlexApp/bin-
debug/index.html# 
 
 
 Space Math V can be used as a classroom challenge activity, assessment tool, 
enrichment activity or in a more dynamic method as is explained in the above scenario.  It 
is completely up to the teacher, their preference and allotted time.  What it does provide, 
regardless of how it is used in the classroom, is the need to be proficient in math. It is 
needed especially in our world of advancing technology and physical science. 
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Teacher Comments

  
"Your problems are great fillers as well as sources of interesting questions. I have even given 
one or two of your problems on a test! You certainly have made the problems a valuable 
resource!" (Chugiak High School, Alaska) 
 
"I love your problems, and thanks so much for offering them! I have used them for two years, 
and not only do I love the images, but the content and level of questioning is so appropriate for 
my high school students, they love it too. I have shared them with our math and science 
teachers, and they have told me that their students like how they apply what is being taught in 
their classes to real problems that professionals work on." (Wade Hampton High School ,SC) 
 
"I recently found the Space Math problems website and I must tell you it is wonderful! I teach 
8th grade science and this is a blessed resource for me. We do a lot of math and I love how 
you have taken real information and created reinforcing problems with them. I have shared the 
website with many of my middle and high school colleagues and we are all so excited. The 
skills summary allows any of us to skim the listing and know exactly what would work for our 
classes and what will not. I cannot thank you enough. I know that the science teachers I work 
with and I love the graphing and conversion questions. The "Are U Nuts" conversion worksheet 
was wonderful! One student told me that it took doing that activity (using the unusual units) for 
her to finally understand the conversion process completely. Thank you!" (Saint Mary's Hall 
MS, Texas) 
 
"I know I’m not your usual clientele with the Space Math problems but I actually use them in a 
number of my physics classes. I get ideas for real-world problems from these in intro physics 
classes and in my astrophysics classes. I may take what you have and add calculus or 
whatever other complications happen, and then they see something other than “Consider a 
particle of mass ‘m’ and speed ‘v’ that…”  (Associate Professor of Physics) 
 
"Space Math has more up-to-date applications than are found in any textbook. Students enjoy 
real-world math problems for the math they have already learned.  Doing Space Math 
problems has encouraged some of my students to take pre-calculus and calculus so they can 
solve the more advanced problems. I learned about Space Math through an email last year. I 
was very impressed with the problems.  I assigned some of the problems to students in my 
Physics classes, printing them out to put in their interactive notebooks. I displayed other 
problems for group discussion, assigned some for homework and used some for group class 
work.  I like the diversity, the color format and having the solutions. I expect to use them even 
more next year in our new space science class. We will have 50 students in two sections."  
(Alan. High School Science Teacher) 
 
"It took time for them to make the connection between the math they learned in math class and 
applying it in the science classroom. Now I use an ELMO to project them. I have used them for 
class work and/or homework.  The math activities were in conjunction with labs and science 
concepts that were being presented.  The math helped "show" the science. Oftentimes 
students were encouraged to help and teach each other. Students began to see how math and 
science were connected. I knew the students were making the connections because they 
would comment about how much math they had to do in science.  Their confidence in both 
classes increased as they were able practice the concepts they learned in math in my science 
class." (Brenda, Technology Resource Teacher) 
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1   The Big Bang - Hubble's Law 

 
 
 

 In 1921, Astronomer Edwin Hubble was 
measuring the speeds of nearby galaxies when 
he noticed a puzzling thing. When he plotted 
the speed of the galaxy against its distance, the 
points from each of the galaxies in his sample 
seemed to follow an increasing 'straight' line.  
 
 This turned out to be the first important 
clue that the universe was expanding. Each 
galaxy was moving away from its neighbor. The 
farther away the galaxy was from the Milky 
Way, the faster it was moving away from us. 

 The table shows the distance and speed of 7 galaxies. The distances are 
given in megaparsecs (mpc). One megaparsec equals 3.26 million light years.  The 
speed is given in kilometers per second. Note, the speed of light is 300,000 
kilometers/sec. 
 
 
Problem 1 - Create a graph that presents the distance to each galaxy in mpc on the 
horizontal axis, and the speed in kilometers/sec on the vertical axis. 
 
 
Problem 2 - What is the range of distances to the galaxies in this sample in light 
years? 
 
 
Problem 3 -  Does the data show that the distances and speeds of the galaxies are 
correlated, anti-correlated or uncorrelated (random)? 
 
 
Problem 4 -  By using a calculator, or using an Excel Spreadsheet, plot the data and 
use the 'Tools' to determine a best-fit linear regression. Alternatively, you may use 
the graph you created in Problem 1 to draw a best-fit line through the data points. 
 
 
Problem 5 - The slope of the line in this plot is called Hubble's Constant. What is your 
estimate for Hubble's Constant from the data you used? 
 
 
Problem 6 - An astronomer measures the speed of a galaxy as 2500 kilometers/sec. 
What would its distance be using your linear regression (now called Hubble's Law)? 

Galaxy Distance 
(mpc) 

Speed 
(km/s) 

NGC-5357 0.45 200 
NGC-3627 0.9 650 
NGC-5236 0.9 500 
NGC-4151 1.7 960 
NGC-4472 2.0 850 
NGC-4486 2.0 800 
NGC-4649 2.0 1090 
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2 Cosmic Bar Graphs 
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Problem1 – Astronomers have classified the 160 largest galaxies in the Virgo 
Cluster according to whether they are spiral-shaped (S and SB), elliptical-shaped 
(E) or irregular (I). The bar graph to the left shows the number in each category. 
From the survey, 81 were classed as S, 19 were classed as E, 56 were classed as 
SB and 3 were classed as I. About what fraction of galaxies in the cluster are 
spirals?
 
 
 
Problem 2 – Gamma-ray bursts happen about once each day. The bar graph to the 
right sorts the 1132 bursts detected between 1991-1996 into two categories. There 
are 320 FBs and 812 SBs indicated in the bar grap. Slow Bursts (SB) are longer 
than 2 seconds, and may be produced by supernovas in distant galaxies.  Fast 
Bursts (FB) lasting less than 2 seconds may be produced by colliding neutron stars 
inside our own Milky Way galaxy. What would you predict for 2009 as the number of 
bursts that might probably come from outside the Milky Way? 
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3 Time Zone Math 

 Earth is a BIG place!  In fact, it 
is so big that different countries see 
sunrise and sunset happen at very 
different times during the day.   
 If you were living in Germany, 
you would see sunrise at 6:00 AM, 
but at that same moment it would be 
the middle of the night in California!  
(Image courtesy 
http://gis.nwcg.gov/giss_2006/cd_contents.html)
  

 If you have ever gone on a long car or plane ride to the east or west, you 
will often hear people complain that they have ‘gained’ or ‘lost’ hours due to 
Time Zone change.  Here’s how it works. 
 When you travel east, the Sun rises higher and higher in the sky. It is as 
though you are seeing the Sun as it would be at a later time in the day. When 
you travel west, the Sun gets lower and lower in the sky.  It is as though you are 
seeing the Sun as it would be at an earlier time in the day.  
 We can make this more precise by saying that as you travel East you will 
gain time, and as you travel west you will lose time. The exact amount depends 
on how many Time Zones you travel through. The figure above shows the Time 
Zones across North America. During the winter, these Time Zones are called 
Eastern Standard Time (EST), Central Standard Time (CST), Mountain 
Standard Time (MST) and Pacific Standard Time (PST).  
 For example, when you travel westwards, your clock will ‘lose’ one hour 
for each Time Zone you pass through. If your watch says 12:00 Noon and you 
are in New York, which is in the EST Time Zone, you need to set your watch 
back one hour to 11:00 AM if you are traveling to Chicago in the CST Zone, two 
hours to 10:00 AM if you are traveling to Denver in the MST Zone, and three 
hours to 9:00 AM if you are raveling to San Francisco the PST Zone.  
  
1 – A solar astronomer wants to study a flare erupting on the Sun at 12:00 PM 
(High Noon) at the solar observatory in Denver while taking to his colleague in 
New York at the same time. At what time should his colleague be ready for the 
phone call? 
 
2 – A second solar astronomer in Paris, France also wants to participate in this 
research. If the Paris Time Zone is 4 hours ahead of EST, what time should the 
Paris astronomer be ready for the same call? 
 
3 – An astronomer sees a solar flare at 2:15 PM EST. A astronomer in Hawaii 
decides to go out for breakfast between 8:00 and 8:30 AM HST. If Hawaii 
Standard Time (HST) is 3 hours earlier than the PST Zone, did the Hawaiian 
astronomer get to see the flare? 
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4 The Dollars and Cents of Research 
 Scientific research 
costs money! You have to 
find money to pay your 
salary to work 40-hours a 
week. You also have to get 
money to pay for the trips 
you take to observatories, 
scientific conferences, to 
pay for your healthcare, 
retirement plans, and the 
rental for your office and 
laboratory space. Here are 
some problems that help 
you see how this all works! 

Problem 1 – Professor Quark is a senior astronomer at PDQ University who makes 
$50.00 an hour. If there are 2,000 work hours in a full year, what will be the 
astronomer’s gross pay before taxes and other deductions, for the year? 
 
Problem 2 – PDQ University charges each astronomer an additional 50% of the 
astronomer’s salary to cover the rental of office space, medical benefits, and 
retirement benefits. How much extra money in addition to his salary will Prof. Quark 
have to pay PDQ University to conduct his research? 
 
Problem 3 -  Prof. Quark needs to buy a new computer ‘work station’ to conduct his 
research. He can choose System A for $5,000, which has 200 gigabytes of hard 
drive space, and operates at 5 megahertz, or he can buy a cheaper System B for 
$1,000, which has a 1,000 gigabyte hard drive and runs five times slower at 1 
megahertz.  Which system do you think he should buy? Why? 
 
Problem 4 -  Prof. Quark expects to take several trips each year to conferences in 
France, China and Canada. These trips will cost a total of $9,000. The university 
adds on an additional cost to this expense to cover their setting up the travel 
arrangements and handling all of the accounting. They charge the researcher 30% of 
the researcher’s cost to do this. What is the total cost to the researcher for the travel 
expenses? 
 
Problem 5 – Prof. Quark plans to support his research by applying to the Long-Term 
Space Astrophysics research grant program at NASA. What is the total amount of 
money he has to apply for if he wants to get fully supported for one year? 
 
Problem 6 – PDQ University will support Prof. Quark for ¾ of his labor in Problem 2 
if he agrees to teach college courses and train graduate students. He will have to get 
external support for the balance of his research support. How much money will he 
have to ask NASA for in a grant proposal to support all of his research for one year?  
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5 Number  Sentence  Puzzles 

 Scientific research has a lot in 
common with solving number puzzles like 
SODUKO in order to figure out what stars or 
planets are doing in space. Use your puzzle-
solving ability to figure out what event is 
described by the following number 
sentences! 

1 - Which story matches the sentence   23 – 10 + 6 = 19  ? 
 
A)  An astronomer discovers 23 quasars on one photograph, 10 quasars on a second 

photograph, and 6 additional quasars on a third photograph. How many quasars 
did she identify? 

 
B) An astronomer spots 23 solar flares on Tuesday and 6 solar flares on Thursday, then 

decides that 10 of the solar flares were not real. How many real flares did he see? 
 
C) An astronomer counts a total of 19 lunar craters, and classifies 23 of them as asteroid 

impacts, 6 of them as volcanic calderas and 10 of them as meteor impacts. 
 
 
2 - Which story matches the sentence 145 + N =  375  ? 
 
A) Two astronomers combined their databases of planets. They observe a total of 375. If 

one astronomer contributed 145 planets, how many did the second astronomer 
contribute? 

 
B) The temperature of an asteroid’s interior changes by 375 degrees between the center 

and the surface. If the surface temperature is 145 degrees Centigrade, what is the 
interior temperature of the asteroid? 

 
C) The width of Saturn’s rings is 375 megameters. If the ring system starts at a distance 

of 145 megameters from Saturn’s outer atmosphere, what is the distance to the 
outer edge of the ring system? 

 
 
3 - Two astronomers combined their catalogs of cosmic gamma-ray bursts. 

There were 287 and 598 cataloged by each astronomer with 65 events 
in common. How many unique events are in the combined catalog? 

 
A)    (287 - 65)  + (598 - 65) =  M 
B)    287   +  (598 – 65)  =  M  
C)    287 + 598  =  M 
D)    (287 + 65)  +  (598 + 65)  =  M 
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6 Fractions in Space 

 Simple fractions come 
up in astronomy in many 
ways. One common way is 
shown to the left. The 
asteroids in the Asteroid Belt 
have gaps where their orbit 
period is a simple fraction 
(3:1, 5/2, or 2:1) of Jupiter's 
orbit period.  
 
Here are a few other ‘far out’ 
examples! 

1 – The satellites of Jupiter, Ganymede and Europa,  orbit the planet in 7.1 day 
and 3.5 days. About what is the ratio of the orbit period or Europa to Ganymede 
expressed as a simple fraction involving the numbers 1, 2, 3 or 4 in the numerator 
or denominator? 
 
 
 
 
 
2 – The planet Pluto orbits the Sun in 248 years while Neptune takes 164 years.  
What is the simplest fraction involving the numbers 1, 2, 3 or 4 in the numerator 
and denominator that approximates the ratio of Neptune's period to Pluto's?  
 
 
 
 
 
 
3 – Draw two concentric circles labeling the outer circle Earth and the inner circle 
Venus. Place a point on each circle at the 12 o’clock position, representing the 
two planets when they are closest to each other. Venus and Earth are opposite 
each other in their orbits every 3/2 of an Earth year. During this time, Venus 
travels 6/5 of its orbit around the Sun. Where will the planets be after 5 opposition 
periods, and rounded to the nearest integer year, how many Earth years will this 
take?  
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7 Equations with one variable  I 

 Calculations involving a single 
variable come up in many different ways in 
astronomy, like the popular one to the left 
for converting centigrade degrees (Tc) into 
Fahrenheit degrees (Tf).  Here are some 
more examples.

TF = 9/5 TC + 32 

Problem 1 – To make the data easier to analyze, an image is shifted by X pixels 
to the right from a stating location of 326. Find the value of X if the new location is 
1436 by solving   326 + X = 1436. 
 
 
 
 
 
 
Problem 2 – The temperature, T, of a sunspot is 2,000 C degrees cooler than the 
Sun’s surface. If the surface temperature is 6,100 C, solve the equation for the 
sunspot temperature if   T + 2,000 = 6,100. 
 
 
 
 
 
 
Problem 3 – The radius, R (in kilometers) of a black hole is given by the formula 
R = 2.9 M, where M is the mass of the black hole in multiples of the Sun’s mass. 
If an astronomer detects a black hole with a radius of 18.5 kilometers, solve the 
equation 18.5 = 2.9M for M to find the black hole’s mass. 
 
 
 
 
 
 
 
Problem 4 – The sunspot cycle lasts 11 years. If the peak of the cycle occurred 
in 1858, and 2001 solve the equation  2001 = 1858 + 11X to find the number of 
cycles, X, that have elapsed between the two years. 
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8 Equations with one variable  II 

 Calculations involving 
a single variable come up in 
many different ways in 
astronomy.  One way is 
through the relationship 
between a galaxy's speed 
and its distance, which is 
known as Hubbel's Law.  
Here are some more 
applications for you to solve! 
 

 
Problem 1 – The blast wave from a solar storm traveled 150 million kilometers in 
48 hours. Solve the equation 150,000,000 = 48 V to find the speed of the storm, V, 
in kilometers per hour. 
 
 
Problem 2– A parsec equals 3.26 light years.  Solve the equation  4.3 = 3.26D to 
find the distance to the star Alpha Centauri in parsecs, D, if its distance is 4.3 light 
years. 
 
 
Problem 3 – Hubble’s Law states that distant galaxies move away from the Milky 
Way, 75 kilometers/sec faster for every 1 million parsecs of distance. Solve the 
equation, V = 75 D to find the speed of the galaxy NGC 4261 located  41 million 
parsecs away    
 
 
 
Problem 4 – Convert the temperature at the surface of the Sun, 9,900 degrees 
Fahrenheit to an equivalent temperature in Kelvin units, T, by using  T = ( F + 459) 
x 5/9 
 
 
Problem 5 – The Andromeda Galaxy measures 3 degrees across on the sky as 
seen from Earth. At a distance of 2 million light years, solve for D, the diameter of 
this galaxy  in light years:   57.3 = 6,000,000/D.  
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9 Time Intervals 

 Astronomers are often interested in 
how long a particular event took. This can 
be used to explore how fast something is 
moving, or how rapidly it is changing in time. 
 
 Here are some ‘far out’ examples! 

 
Problem 1 – The gamma-ray burst from the galaxy TXS1510-089 was detected 
on July 24, 2007 by the AGILE satellite. The burst began at 23:25:07 and ended 
at 23:25:57 How many seconds did it last? 
 
Problem 2 – The black hole orbiting the star A0620-00 in the constellation 
Monocerous produced a micro-flare on September 29, 2002 visible at radio 
wavelengths as it swallowed some of the gas falling into it. If the flare began at 
01:50:00 and ended at 01:53:20 how many seconds elapsed?  

Problem 3 – On September 1, 1859 the Sun released a cloud of plasma called a 
Coronal Mass Ejection  (CME) at 11:18 AM. If the CME reached Earth on 
September 2 at 04:54 AM how many hours did it take the cloud to travel from the 
Sun  to Earth? 
 
Problem 4 – Full Moon occurred on July 18, 2008 and August 16, 2008. How 
many days elapsed between the two lunar phases? 
 
Problem 5 – A massive star in the Eta Carina cluster erupted in a giant flare in 
1843. How many years has it been since this eruption if the current year is 2008? 
 
Problem 6 – The Crab Nebula was formed by a supernova  in the year 1054 AD. 
If the next supernova spotted by humans occurred in 1987, how many years 
elapsed between these events? 
 
Problem 7 -  The Earth was formed 4.5 billion years ago. The asteroid 
bombardment of its surface ended 3.9 billion years ago. How many millions of 
years did the asteroid bombardment era last? 
 
Problem 8 -  The universe came into existence in the Big Bang 13.7 billion years 
ago. The most ancient galaxy astronomers have detected so far is A1689-zD1, 
which was probably formed about 13.0 billion years ago. How many millions of 
years was the universe in existence before this galaxy began to form? 
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 Astronomers measure the 
brightness of a star in the sky using a 
magnitude scale. On this scale, the 
brightest objects have the SMALLEST 
number and the faintest objects have the 
LARGEST numbers. It’s a ‘backwards’ 
scale that astronomers inherited from the 
ancient Greek astronomer Hipparchus.  
 
The image to the left taken by the Hubble 
Space Telescope shows hundreds f faint 
galaxies beyond the Milky Way. The 
faintest are of magnitude +25.0. 
 
 
1 – At its brightest, the planet Venus has a 
magnitude of -4.6. The faintest star you 
can see with your eye has a magnitude of 
+7.2. How much brighter is Venus than the 
faintest visible star? 
 
2 – The full moon has a magnitude of -
12.6 while the brightness of the Sun is 
about -26.7. How many magnitudes fainter 
is the moon than the Sun? 
 
3 – The faintest stars seen by astronomers 
with the Hubble Space Telescope are 
about +30.0. How much fainter are these 
stars than the Sun? 
 
4 -  Jupiter has a magnitude of –2.7 while 
its satellite, Callisto, has a magnitude of 
+5.7. How much fainter is the Callisto than 
Jupiter? 
 
5 – Each step by 1 unit in magnitude 
equals a brightness change of 2.5 times. A 
star with a magnitude of +5.0 is 2.5 times 
fainter than a star with a magnitude of 
+4.0. Two stars that differ by 5.0 
magnitudes are 100-times different in 
brightness. If Venus was observed to have 
a magnitude of +3.0 and the full moon had 
a magnitude of -12.0, how much brighter 
was the moon than Venus? 

The Stellar Magnitude Scale                                   10 
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Groups, Clusters and Individuals                            11    
 Astronomers study many different 
kinds of objects in space. Sometimes these 
objects contain many individuals that need 
to be tallied separately.  
 
 The cluster of galaxies called Abell-
2218 is a rich collection of galaxies, as 
shown in the Hubble Space Telescope 
photo to the left. 

1 – Astronomers observed the surface of the Sun on March 27, 2001 and counted  230 
sunspots. If there were 10 sunspots in each group, about how many sunspot groups 
were on the Sun that day? 
 
 
 
 
2 – Since 1950, astronomers have cataloged 35 individual galaxies within the group of 
galaxies containing the Milky Way. If this group is typical, and there are 200 galaxy 
groups within 100 million light years of the Milky Way, how many individual galaxies are 
present? 
 
 
 
 
 
3 – The Milky Way galaxy has 158 satellite star clusters that orbit its in space. If each of 
these star clusters contains 100,000 stars, how many stars exist in these clusters? 
 
 
 
 
4 – Astronomers have detected 430 planets orbiting 300 nearby stars. About how many 
planets orbit an average star in this sample?  
 
 
 
5 – A cubic centimeter of gas in the Orion Nebula contains about 10 atoms of hydrogen 
and 4 atoms of helium. Hydrogen atoms contain one proton and one electron. Helium 
atoms contain 2 protons, 2 neutrons and 2 electrons. How many protons would you find 
in a single cubic centimeter of this gas? How many neutrons? How many electrons? 
What is the total number of protons, neutrons and electrons? 
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12 A Matter of Timing 

 Astronomers who study 
planets and their satellites often 
have to work out how often 
satellites or planets ‘line up’ in 
various ways, especially when 
they are closest together in space. 
 
Figure shows the satellite Dione 
(Courtesy: NASA/Cassini) 

 
Problem 1 – The two satellites of Tethys and Dione follow circular orbits around Jupiter. 
Tethys takes about 2 days for one complete orbit while Dione takes about 3 days. If the 
two satellites started out closest together on July 1, 2008, how many days later will they 
once again be at ‘opposition’ with one another?  
 
 
A)   Find the Least Common Factor between the orbit periods. 
 
 
 
B) Draw two concentric circles and work the solution out graphically. 
 
 
 
C)  What is the relationship between your answer to A and B? 
 
 
 
 
 
 
 
Problem 2 -  Two planets have orbit periods of  3 years and 5 years. How long will it 
take them to return to the same locations that they started at? 
 
 
 
 
 
 
 

Space Math                                http://spacemath.gsfc.nasa.gov 
 



13 Areas and Probabilities 
 There are many situations in 
astronomy where probability and area go 
hand in hand!  The problems below can be 
modeled by using graph paper shaded to 
represent the cratered areas. 
 
 The moon's surface is heavily 
cratered, as the Apollo 11 photo to the left 
shows. The total area covered by them is 
more than 70% of the lunar surface! 

 
1 – A 40km x 40km area of the Moon has 5 non-overlapping craters, each about 5km in 
radius. A) What fraction of this area is covered by craters? B) What is the percentage of 
the cratered area to the full area? C) Draw a square representing the surveyed region 
and shade the fraction covered by craters. 
 
 
 
2 - During an 8-day period, 2 days were randomly taken off for vacation. A) What 
fraction of days are vacation days? B) What is the probability that Day-5 was a vacation 
day? C) Draw a square whose shaded area represents the fraction of vacation days. 
 
 
 
3 – An asteroid capable of making a circular crater 40-km across impacts this same 
40km x 40km area dead-center. About what is the probability that it will strike a crater 
that already exists in this region? 
 
 
 
4 – During an 8-day period, 2 days were randomly taken of for vacation, however, during 
each 8-day period there were 4 consecutive days of rain that also happened randomly 
during this period of time.  What is the probability that at least one of the rain days was a 
vacation day? (Hint: list all of the possible 8-day outcomes.) 
 
 
 
Inquiry – How can you use your strategy in Problem 4 to answer the following 
question: An asteroid capable of making a circular crater 20-km across impacts this 
same 40km x 40km area dead-center. What is the probability that it will strike a crater 
that already exists in this region? 
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14 Solar Storms: Sequences and Probabilities     I 

 The Sun is an active star, which 
produces solar flares (F) and explosions of 
gas (C). Astronomers keep watch for these 
events because they can harm satellites and 
astronauts in space. Predicting when the 
next storm will happen is not easy to do. 
The problems below are solved by writing 
out all of the possibilities, then calculating 
the probability of the particular outcome! 
 
Solar flare photo courtesy TRACE/NASA 

 
1 – During a week of observing the sun, astronomers detected 1 solar flare (F). What 
was the probability (as a fraction) that it happened on Wednesday?  
 
 
 
 
 
 
 
 
2 – During the same week, two gas clouds were ejected (C), but not on the same days. 
What is the probability (as a fraction) that a gas cloud was ejected on Wednesday? 
 
 
 
 
 
 
 
 
3 – Suppose that the flares and the gas clouds had nothing to do with each other, and 
that they occurred randomly. What is the probability (as a fraction) that both a flare and a 
gas cloud were spotted on Wednesday? (Astronomers would say that these phenomena 
are uncorrelated because the occurrence of one does not mean that the other is likely to 
happen too). 
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15 Solar Storms: Sequences and Probabilities     II 

 The Sun is an active star that 
produces solar flares (F) and explosions of 
gas (C). Astronomers keep watch for these 
events because they can harm satellites and 
astronauts in space. Predicting when the 
next storm will happen is not easy to do. 
The problems below are solved by writing 
out all of the possibilities, then calculating 
the probability of the particular outcome! 
 
Photo of a coronal mass ejection courtesy 
SOHO/NASA. 

 
Problem 1 – During a particularly intense week for solar storms, three flares were 
spotted along with two massive gas cloud explosions. Work out all of the possible ways 
that 3 Fs and 2 Cs can be separately distributed among 7 days. Examples include  C C 
X X X X X and F F F X X X X. 
 
What is the probability (as a fraction) that none of these events occurred on Friday? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Inquiry:  Does the probability matter if we select any one of the other 6 days? 
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16 Solar Storm Timeline 

 On July 15, 2001 a solar storm 
was tracked from the Sun to Earth by a 
number of research satellites and 
observatories.  This activity lets you 
perform time and day arithmetic to figure 
out how long various events lasted. This 
is a very basic process that scientists go 
through to study an astronomical 
phenomenon. The image to the left was 
taken by the TRACE satellite and shows 
the x-ray flare on the Sun. The ‘slinky’ 
shape is caused by magnetic fields. 
 
Photo courtesy SOHO/NASA 

 
The Story: On July 14, 2000, NASA’s TRACE satellite spotted a major X5.7-
class solar flare erupting at 09:41 from Active Region 9077. The flare continued to 
release energy until 12:31.  At 10:18:27, radio astronomers using the Nancay 
radio telescope detected the start of a radio-frequency Type-I noise storm. This 
storm strengthened, and at 10:27:27, four moving radio sources appeared. 
Meanwhile, the satellite, GOES-10 detected the maximum of the x-ray light from 
this flare at 10:23. The SOHO satellite, located 92 million miles from the Sun,  
and 1 million miles from Earth, recorded a radiation storm from fast-moving 
particles, that caused data corruption at 10:41. The SOHO satellite’s LASCO 
imager also detected the launch of a coronal mass ejection (CME) at 10:54. The 
CME arrived at the satellite at 14:17 on July 15. Then at 14:37 on July 15, the 
CME shock wave arrived at Earth and compressed Earth’s magnetic field.  The 
IMAGE satellite recorded the brightening of the auroral oval starting at 14:25. 
Aurora were at their brightest at 14:58. The aurora expanded to the lowest 
latitude at 17:35. By 20:00, Earth’s magnetic field has slightly decreased in 
strength in the equatorial regions.   By 16:47 on July 16, the IMAGE satellite 
recorded the recovery of Earth’s magnetosphere to normal conditions. On 
January 12, 2001, the CME was detected by the Voyager I satellite located 63 AU 
from the Sun. 
 
 
 
Problem 1 - From this information, create a time line of the events mentioned. 
 
 
Problem 2 – How long did it take for the CME to reach Earth? 
 
 
Inquiry:  What other questions can you explore using this timing information? 
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17         Solar Storm Energy and Pie Graphs 

 The pie charts below show approximately how various forms of energy 
are involved in a solar flare. Flares occur when stored magnetic energy is 
suddenly released. The chart on the left shows how much of this magnetic 
energy is available for creating a flare (purple) and how much is lost (blue). The 
chart on the right shows how much of the available magnetic flare energy goes 
into four different phenomena: Light green represents forms of radiation such as 
visible light and x-rays. Blue represents (kinetic) energy in ejected clouds of gas 
called Coronal Mass Ejections. Purple represents flare energy that goes into 
heating local gases to millions of degrees Centigrade, and white is the portion of 
the flare energy that is lost to working against gravity.  

  Graph of stored magnetic energy            Graph of solar flare energy forms 

Problem 1 - About what percentages of each of the four forms of energy are 
represented in the right-hand chart? 
 
Problem 2 - About what percentage of the original, stored magnetic energy is 
available for flares? 
 
Problem 3 - About what fraction of the original magnetic energy ends up as solar 
flare radiation, assuming all forms of energy can be interchanged with each 
other? 
 
Problem 4 - About what fraction of the original magnetic energy ends up in CME 
ejection? 
 
Problem 5 - A typical large flare has enough total energy to meet the world-wide 
power demands of human civilization for 10,000 years. How many years would be 
equivalent to  A) causing the flare to shine and B) ejecting a CME? 
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Lunar Cratering - Probability and Odds 18 

 The moon has lots of craters! If you 
look carefully at them, you will discover that 
many overlap each other. Suppose that over 
a period of 100,000 years, four asteroids 
struck the lunar surface. What would be the 
probability that they would strike an already-
cratered area, or the lunar mare, where 
there are few craters? 

Problem 1 - Suppose you had a coin where one face was labeled 'C' for cratered 
and the other labeled U for uncratered. What are all of the possibilities for flipping 
C and U with four coin flips? 
 
Problem 2 - How many ways can you flip the coin and get only Us? 
 
Problem 3 - How many ways can you flip the coin and get only Cs? 
 
Problem 4 - How many ways can you flip the coin and get 2 Cs and 2 Us? 
 
Problem 5 - Out of all the possible outcomes, what fraction includes only one 'U' 
as a possibility? 
 
Problem 6 - If the fraction of desired outcomes is 2/16, which reduces to 1/8, we 
say that the 'odds' for that outcome are 1 chance in 8. What are the odds for the 
outcome in Problem 4? 
 
 
A fair coin is defined as a coin whose two sides have equal probability of 
occurring so that the probability for 'heads' = 1/2 and the probability for tails = 1/2 
as well. This means that P(heads) + P(tails) = 1/2 + 1/2 = 1.  Suppose a tampered 
coin had P(heads) = 2/3 and P(tails) = 1/3. We would still have P(heads) + P(tails) 
= 1, but the probability of the outcomes would be different…and in the cheater's 
favor. For example, in two coin flips, the outcomes would be  HH, HT ,TH and TT 
but the probabilities for each of these would be HH = (2/3)x(2/3)=4/9; HT and TH 
= 2 x (2/3)(1/3) = 4/9, and TT = (1/3)x1/3) = 1/9.  The probability of getting more 
heads would be  4/9 + 4/9 = 8/9 which is much higher than for a fair coin. 
 
Problem 7:  From your answers to Problem 2, what would be the probability of 
getting only Us in 4 coin tosses if  A) P(U) = 1/2?  B) P(U) = 1/3? 
 
 
Problem 8 - The fraction of the lunar surface that is cratered is 3/4, while the mare 
(dark areas) have few craters and occupy 1/4 of the surface area. If four asteroids 
were to strike the moon in 100,000 years, what is the probability that all four 
would strike the cratered areas?
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19 The Mass of the Moon 

 On July 19, 1969 the Apollo-11 
Command Service Module and LEM 
entered lunar orbit. The orbit period 
was 2.0 hours, at a distance of 1,737 
km  from the lunar center.  
 
 Believe it or not, you can use 
these two pieces of information to 
determine the mass of the moon. 
Here's how it's done! 

Problem 1 - Assume that Apollo-11 went into a circular orbit, and that the inward 
gravitational acceleration by the Moon on the capsule, Fg, exactly balances the 
outward centrifugal acceleration, Fc.  Solve Fc = Fg for the mass of the Moon, M, 
in terms of V, R and the constant of gravity, G, given that: 

 

Problem 2 -  By using the fact that for circular motion, V = 2 π R /  T, re-
express your answer to Problem 1 in terms of R, T and M. 
 
 
 
Problem 3 - Given that G = 6.67 x 10-11  m3 kg -1 sec-2, R = 1,737 km and T = 
2 hours, calculate the mass of the Moon in kilograms! 
 
 
 
Problem 4 - The mass of Earth is 5.97 x 1024 kg. What is the ratio of the 
Moon's mass, derived in Problem 3,  to Earth's mass? 
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20 The Moon's Density - What's inside? 

 The Moon has a mass of  7.4 x 1022 
kg  and a radius of   1,737 km. Seismic data 
from the Apollo seismometers also shows 
that there is a boundary inside the Moon at 
a radius of about 400 km where the rock 
density or composition changes. 
Astronomers can use this information to 
create a model of the Moon's interior. 
 

Problem 1 - What is the average density of the Moon in grams per cubic 
centimeter (g/cm3) ? (Assume the Moon is a perfect sphere.) 
 
Problem 2 - What is the volume, in cubic centimeters,  of  A) the Moon's interior 
out to a radius of 400 km? and B) The remaining volume out to the surface? 
 
 You can make a simple model of a planet's interior by thinking of it as an 
inner sphere (the core) with a radius of R(core), surrounded by a spherical shell 
(the mantle) that extends from R(core) to the planet's surface, R(surface). We 
know the total mass of the planet, and its radius, R(surface). The challenge is to 
come up with densities for the core and mantle and R(core) that give the total 
mass that is observed. 
 
Problem 3 - From this information, what is the total mass of the planet model in 
terms of the densities of the two rock types (D1 and D2) and the radius of the 
core and mantle regions R(core) and R(surface)? 
 
Problem 4 - The densities of various rock types are given in the table below.  
   
                      Type     Density 
            ------------------------------------------------------------------------------------------- 
  I  - Iron+Nickle mixture  (Earth's core)                         15.0 gm/cc  
  E - Earth's mantle rock (compressed)               4.5 gm/cc   
  B - Basalts      2.9 gm/cc 
  G - Granite      2.7 gm/cc 
  S - Sandstone                  2.5 gm/cc 
 
 A) How many possible lunar models are there? B) List them using the code 
letters in the above table, C) If denser rocks are typically found deep inside a 
planet, which possibilities survive? D) Find combinations of the above rock types 
for the core and mantle regions of the lunar interior model, that give 
approximately the correct lunar mass of  7.4 x 1025 grams. [Hint: use an Excel 
spread sheet to make the calculations faster as you change the parameters.]  E) 
If Apollo rock samples give an average surface density of 3.0 gm/cc, which 
models give the best estimates for the Moon's interior structure? 
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21 The Hot Lunar Interior 

Earth heat flow map  (H. N. Pollack, S. J. Hurter, 
and J. R. Johnson, Reviews of Geophysics, Vol. 
31, 1993.) 

 When large bodies form, their 
interiors are heated by a combination of 
radioactivity and the heat of formation from 
the infall of the rock. For planet-sized 
bodies, this heat can be generated and lost 
over billions of years. The end result will be 
that the core cools off and, if molten, it 
eventually solidifies. Measuring the surface 
temperature of a solid body, and the rate at 
which heat escapes its surface, provides 
clues to its internal heating and cooling 
rates. 

Problem 1 - Measuring the heat flow out of the lunar surface is a challenge 
because the monthly and annual changes of surface solar heating produce 
interference. Apollo 15 astronauts measured the heat flow from two bore holes 
that reached about 2-meters below the surface. When corrected for the monthly 
effects from the Sun, they detected a heat flow of about 20 milliWatts/meter2.  If 
the radius of the Moon is 1,737 kilometers, what is the total thermal power 
emitted by the entire Moon in billions of watts? 
 
 
Problem 2 - A future lunar colony covers a square surface that is 100 meters x 
100 meters. What is the total thermal power available to this colony by 
'harvesting' the lunar heat flow? 
 
 
Problem 3 - The relationship between power, L, surface radius, R,  and surface 
temperature, T,  is given by L = 4 π R2 σ T4  where σ = the Stefan-Boltzman 
constant and has a value of  5.67×10−8 W/m2 / K4 , and where T is in Kelvin 
degrees, L is in watts, and R is in meters. Suppose the Moon's interior was 
heated by a source with a radius of 400 kilometers at the lunar core, what would 
the temperature of this core region have to be to generate the observed thermal 
wattage at the surface? 
 
 
Problem 4 - The lunar regolith and crust is a very good insulator! Through 
various studies, the temperature of the Moon is actually believed to be near 1,200 
K within 400 km of the center. A) Using the formula for L in Problem 3, how much 
power is absorbed by the lunar rock overlaying the core? B)  From you answer to 
(A), how many Joules are absorbed by each cubic centimeter of overlaying lunar 
rock each second (Joules/cm3)? C) Basalt begins to soften when in absorbs over 
1 million Joules/cm3. Is the lunar surface in danger of melting from the heat flow 
within? 
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22 Is there a lunar meteorite hazard? 

 Without an atmosphere, there is 
nothing to prevent millions of pounds a year 
of rock and ice fragments from raining down 
upon the lunar surface.   
 
 Traveling at 10,000 miles per hour 
(19 km/s), they are faster than a speeding 
bullet and are utterly silent and invisible until 
they strike.  
 
 Is this something that lunar explorers 
need to worry about? 

 
Problem 1 - Between 1972 and 1992, military infra-sound sensors on Earth 
detected 136 atmospheric detonations caused by meteors releasing blasts 
carrying an equivalent energy of nearly 1,000 tons of TNT - similar to small 
atomic bombs, but without the radiation. If the radius of Earth is 6,378 km, A) 
what is the rate of these deadly impacts on Earth in terms of impacts per km2 per 
year? B) Assuming that the impact rates are the same for Earth and the Moon, 
suppose a lunar colony has an area of 10 km2. How many years would they have 
to wait between meteor impacts? 
 
 
 
Problem 2 - Between 2005-2007, NASA astronomers counted 100 flashes of 
light from meteorites striking the lunar surface - each equivalent to as much as 
100 pounds of TNT. If the surveyed area equaled 1/4 of the surface area of the 
Moon, and the lunar radius is 1,737 km, A) What is the arrival rate of these 
meteorites in meteorites per km2 per year? B) If a lunar colony has an area of 10 
km2, how long on average would it be between impacts? 
 
  
 
 
Problem 3 - According to H.J. Melosh (1981)  meteoroids as small as 1-millimeter 
impact a body with a  100-km  radius about once every 2 seconds. A) What is the 
impact rate in units of impacts per m2 per hour? B) If an astronaut spent a 
cumulative 1000 hours moon-walking and had a spacesuit surface area of 10 m2, 
how many of these deadly impacts would he receive? C) How would you interpret 
your answer to B)? 
 
 

Damage to Space Shuttle Endeavor in 2000 
from a micrometeoroid or debris impact . The 
crater is about 1mm across. (Courtesy - 
JPL/NASA) 
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23 The Earth and Moon to Scale 

 We have all seen drawings or 
sketches in books that show Earth 
and moon together in the same view, 
but in reality they are really very 
different in size, and are much farther 
apart than you might think.  
 
 By creating properly scaled 
drawings, you will get a better idea of 
what their sizes are really like!  All 
you will need is a compass, a metric 
ruler, and a calculator. 

 The photo above was taken by the Voyager 1 spacecraft on September 
18, 1977 at a distance of 7 million miles from Earth, and it has not been edited in 
any way.  Are their diameters to scale? Their distance from each other? Even 
actual images can be distorted because of perspective and distance effects. 
 
Problem 1 - The radius of the Moon is 1,737 kilometers, and the radius of Earth 
is 6,378 kilometers. What is the ratio of Earth's radius to the Moon's? 
 
 
Problem 2 - To the nearest whole number, about how much larger is the 
diameter of Earth than the moon? 
 
 
Problem 3 -  With your ruler and compass, draw two circles that represent this 
size difference, and use a radius of 1 centimeter for the moon disk. Inside the 
circles, label them 'Earth' and 'Moon'. 
 
 
Problem 4 - The distance between the center of Earth and the Moon is 384,000 
kilometers. To the nearest integer, how many times the radius of Earth is the 
distance to the Moon? 
 
 
Problem 5 -  Cut out the circles for Earth and the Moon from Problem 3. Using 
the radius of your circle for Earth as a guide, how far apart, in centimeters, would 
you have to hold the two cut-outs to make a scale model of the Earth-Moon 
system that accurately shows the sizes of the two bodies and their distance? 
 
Problem 6 - Look through books in your library, or use GOOGLE to do an image 
search. Do any of the illustrations show the Earth-Moon system in its correct 
scale? Why do you think artists draw the Earth-Moon system the way that they 
do? 
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24 Planet Fractions and Scales 

 Some of the planets in our 
solar system are much bigger than 
Earth while others are smaller. By 
using simple fractions, you will 
explore how their sizes compare to 
each other. 
 
 
Image courtesy NASA/Chandra Observatory/SAO 

Problem 1 - Saturn is 10 times bigger than Venus, and Venus is  1/4 the size of 
Neptune. How much larger is Saturn than Neptune? 
 
 
Problem 2 - Earth is twice as big as Mars, but only 1/11 the size of Jupiter. How 
large is Jupiter compared to Mars? 
 
 
Problem 3 - Earth is the same size as Venus. How large is Jupiter compared to 
Saturn? 
 
 
Problem 4 - Mercury is 3/4 the size of Mars. How large is Earth compared to 
Mercury? 
 
 
Problem 5 -  Uranus is the same size as Neptune. How large is Uranus 
compared to Earth? 
 
 
Problem 6 - The satellite of Saturn, called Titan, is 1/10 the size of Uranus. How 
large is Titan compared to Earth? 
 
 
Problem 7 -  The satellite of Jupiter, called Ganymede, is  2/5 the size of  Earth. 
How large is it compared to Jupiter? 
 
 
Problem 8 - The Dwarf Planet Pluto is 1/3 the diameter of Mars. How large is the 
diameter of Jupiter compared to Pluto? 
 
 
Problem 9 -  If the diameter of Earth is 13,000 km ,what are the diameters of all 
the other bodies? 
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25 The relative sizes of the sun and stars 

 Stars come in many sizes, but their 
true appearances are impossible to see 
without special telescopes. The image to the 
left was taken by the Hubble Space 
telescope and resolves the red supergiant 
star Betelgeuse so that its surface can be 
just barely seen. Follow the number clues 
below to compare the sizes of some other 
familiar stars! 

 
Problem 1 -  The sun's diameter if 10 times the diameter of Jupiter. If Jupiter is 
11 times larger than Earth, how much larger than Earth is the Sun? 
 
 
Problem 2 - Capella is three times larger than Regulus, and Regulus is twice as 
large as Sirius. How much larger is Capella than Sirius? 
 
 
Problem 3 - Vega is 3/2 the size of Sirius, and Sirius is 1/12 the size of Polaris. 
How much larger is Polaris than Vega? 
 
Problem 4 - Nunki is 1/10  the size of Rigel, and Rigel is   1/5 the size of Deneb. 
How large is Nunki compared to Deneb? 
 
 
Problem 5 -  Deneb is 1/8 the size of VY Canis Majoris, and VY Canis Majoris is 
504 times the size of Regulus. How large is Deneb compared to Regulus? 
 
 
Problem 6 - Aldebaran is 3 times the size of Capella, and Capella is twice the 
size of Polaris. How large is Aldebaran compared to Polaris? 
 
 
Problem 7 -  Antares is half the size of Mu Cephi. If Mu Cephi is 28 times as 
large as Rigel,  and Rigel is 50 times as large as Alpha Centauri, how large is 
Antares compared to Alpha Centauri? 
 
 
Problem 8 - The Sun is 1/4 the diameter of Regulus. How large is VY Canis 
Majoris compared to the Sun? 
 
 
Inquiry: - Can you use the information and answers above to create a scale 
model drawing of the relative sizes of these stars compared to our Sun. 
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26 Fly me to the Moon! 

If spacecraft had rockets that could make 
them travel at any speed, we could fly to the 
Moon from Earth in a straight line, and make the 
trip in a few minutes. In the Real World, we can't 
do that even with the most powerful rockets we 
have. Instead, we have to obey Newton's Laws 
of Motion and take more leisurely, round-about 
routes! 
 To see how this works, you need a 
compass, metric ruler, a large piece of paper, a 
string, a thumbtack, and a pencil. 

Step 1 - With your compass, draw a circle 1/2-centimeter in radius. Label the inside of 
this 'Earth'.  Step 2 - Draw a second circle centered on Earth with a radius of 1 
centimeter. Label this 'Earth Orbit'. Step 3 - Using the string and thumbtack, draw a 
second circle with a radius of 30 centimeters. Label this 'Orbit of Moon'.  Step 4 - Draw a 
line connecting the center of earth and a point on the lunar orbit. Label the lunar orbit 
Point B. Step 5 - Extend the line so that it intersects a point on the Earth orbit circle in the 
opposite direction from Earth's center. There should be two intersection points. The first 
will be between Earth and the lunar orbit. Label this Point C. The second will be behind 
Earth. Label this Point A. Step 6 - As carefully as you can, draw a free-hand ellipse with 
one focus centered on Earth that arcs between Point A and Point B. This is called the 
major axis of the ellipse.   See the above figure for comparison. 
 What you have drawn is a simple rocket trajectory, called a Hohmann Transfer 
orbit, that connects a spacecraft orbiting Earth, with a point on the lunar orbit path. If you 
had unlimited rocket energy, you could travel the path from Point C to Point B in a few 
hours or less.  If you had less energy, you would need to take a path that looks more like 
the one from Point A to Point B and is slower, so it takes more time. Even less energy 
would involve a spiral path that connects Point A and Point B but may loop one or more 
times around Earth as it makes its way to lunar orbit. Can you draw such a path? 
 
Problem 1 - If there were no gravity, spacecraft could just travel from place to place in a 
straight line at their highest speeds, like the Enterprise in Star Trek. If the distance to the 
Moon is 380,000 kilometers, and the top speed of the Space Shuttle is 10 kilometers/sec, 
how many hours would the Shuttle take to reach the Moon? 

 

Astrodynamicists are the experts that calculate orbits for spacecraft. One of the most 
important factors is the total speed change, called the delta-V, to get from one orbit to 
another. For a rocket to get into Earth orbit requires a delta-V of 8600 m/sec. To go from 
Earth orbit to the Moon takes an additional delta-V of 4100 meters/sec.  

 

Problem 2 - To enter a Lunar Transfer Orbit, a spacecraft has enough fuel to make a 
total speed change of 3500 m/sec. If it needs to make a speed change of 2000 m/s in the 
horizontal direction, and 3000 m/sec in the vertical direction to enter the correct orbit, is 
there enough fuel to reach the Moon in this way? [Hint, use the Pythagorean Theorem] 
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27 Galaxies to Scale 

 The Milky Way is a spiral galaxy. There are many other kinds of galaxies, 
some much larger then the Milky Way, and some much smaller.  This exercise lets 
you create a scale model of the various kinds, and learn a little about working with 
fractions too! 

Problem 1 - The irregular galaxy IC-1613 is twice as 
large as the elliptical galaxy M-32, but 10 times 
smaller than the spiral galaxy NGC-4565. How much 
larger is NGC-4565 than M-32? 
 
Problem 2 - The spiral galaxy Andromeda is three 
times as large as the elliptical galaxy NGC-5128, and 
NGC-5128 is 4 times as large as the Large 
Magellanic Cloud, which is an irregular galaxy. How 
much larger is the Andromeda galaxy than the Large 
Magellanic Cloud? 
 
Problem 3 - The Milky Way spiral galaxy is  13 times 
larger than the irregular galaxy IC-1613. How much 
larger than NGC-4565 is the Milky Way? 
 
 
Problem 4 -  The elliptical galaxy Leo-1 is 1/4 as 
large as the elliptical galaxy Messier-32, and the 
spiral galaxy Messier-33 is 9 times larger than 
Messier-32. How large is Leo-1 compared to 
Messier-33? 
 
 
Problem 5 -  The elliptical galaxy NGC-205 is 2/3 as 
large as the Large Magellanic Cloud. How large is 
NGC-205 compared to the Andromeda galaxy? 
 
 
 Problem 6 - The irregular galaxy NGC-6822 is 8/5 
the diameter of Messier-32, and Messier-32 is 20 
times smaller than NGC-4565. How large is NGC-
6822 compared to IC-1613? 
 
 
Problem 7 - Draw a scale model of these galaxies 
showing their relative sizes and their shapes. 

Images: Top: The spiral galaxy Messier 74 taken by the Gemini Observatory;  Bottom: The elliptical galaxy 
Messier-87 obtained at the Canada-France-Hawaii Telescope (copyright@cfht.hawaii.edu);   
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28 Extracting Oxygen from Moon Rocks 

 About 85% of the mass of a rocket is 
taken up by oxygen for the fuel, and for 
astronaut life support. Thanks to the Apollo 
Program, we know that as much as 45% of the 
mass of lunar soil compounds consists of 
oxygen. The first job for lunar colonists will be to 
'crack' lunar rock compounds to mine oxygen.  

 NASA has promised $250,000 for the 
first team capable of pulling breathable oxygen 
from mock moon dirt; the latest award in the 
space agency's Centennial Challenges program. 

 Lunar soil is rich in oxides of silicon, calcium and iron. In fact, 43% of the mass of 
lunar soil is oxygen. One of the most common lunar minerals is ilmenite, a mixture of 
iron, titanium, and oxygen. To separate ilmenite into its primary constituents, we add 
hydrogen and heat the mixture. This hydrogen reduction reaction is given by the ‘molar’ 
equation: 

   FeTiO3 + H2   --- >    Fe  +  TiO2  +  H2O   
 

A Bit Of Chemistry - This equation is read from left to right as follows: One mole 
of ilmenite is combined with one mole of molecular hydrogen gas to produce one mole of 
free iron, one mole of titanium dioxide, and one mole of water. Note that the three atoms 
of oxygen on the left side (O3) is 'balanced' by the three atoms of oxygen found on the 
right side  (two in TiO2 and one in H2O). One 'mole' equals 6.02 x 1023 molecules.   

The 'molar mass' of a molecule is the mass that the molecule has if there are 1 
mole of them present. The masses of each atom that comprise the molecules are added 
up to get the molar mass of the molecule. Here’s how you do this:  

For H2O, there are two atoms of hydrogen and one atom of oxygen. The atomic 
mass of hydrogen is 1.0 AMU  and oxygen is 16.0 AMU, so the molar mass of H2O is  2 
(1.0) + 16.0 = 18.0 AMU. One mole of water molecules will equal 18 grams of water 
by mass.  
 
Problem 1 -The atomic masses of the atoms in the ilmenite reduction equation are  Fe =   
55.8   and  Ti = 47.9.  A) What is the molar mass of ilmenite?   B) What is the molar mass 
of molecular hydrogen gas?  C) What is the molar mass of  free iron?   D) What is the 
molar mass of titanium dioxide?  E) Is mass conserved in this reaction?        
 
Problem 2 - If 1 kg of ilmenite was 'cracked' how many grams of water would be 
produced? 
 
Inquiry Question - If 1 kg of ilmenite was 'cracked' how many grams of molecular 
oxygen would be produced if the water molecules were split by electrolysis into 
   2 H2O   -- > 2H2 + O2? 
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29 The Solar Neighborhood within 17 light years. 

 There are 45 stars within 17 
light years of the sun. It is very hard 
to appreciate just how big space is. 
By considering our neighborhood in 
the Milky Way, we can start to get a 
sense of scale.   
 
Local star map courtesy NASA/JPL 

 The table below gives the names, distances and angles to 11 of the most 
well-known neighbors to the sun. Although stars are spread out in 3-dimensional 
space, we will compress these distances to their 2-dimensional equivalents. On a 
2-dimensional grid, place a dot at the Origin to represent the Sun. With a metric 
ruler and a protractor, plot the stars on a piece of paper and label each star. Use 
a scale of 1 centimeter = 1 light year. 
 
  Name   Angle    Distance 
  Alpha Centauri 220        4.3 light years 
  Barnard's Star 270        5.9 
  Wolf 359  170        7.6 
  Sirius   100        8.6 
  Epsilon Eridani   50      10.7 
  61 Cygni  315      11.2 
  Procyon  115      11.4 
  Tau Ceti    25      11.9 
  Kruger 60  335      12.8 
  40 Eridani    60      15.9 
  Altair   300      16.6 
 
Problem 1 - What is the distance between Sirius and Altair? 
 
 
Problem 2 - What is the distance between Kruger 60 and Altair? 
 
 
Problem 3 - Can you find a pair of stars that are closer to each other than either 
of them are to the Sun? 
 
 
Problem 4 - If you were starting from Earth, what is the shortest journey you 
could make that would visit all of the stars in your map? 
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30 Our Neighborhood in the Milky Way 

 The Milky Way galaxy is a flat disk 
about 100,000 light years in diameter and 
1000 light years thick. All of the bright stars, 
clusters and nebula we see are actually very 
close-by. Let's have a look at a few of these 
familiar landmarks! 

 The table below gives the distances and angles to a few familiar nebulae 
and star clusters within 7,000 light years of the Sun. Plot them on a paper with a 
scale of 1 centimeter = 500 light years, and with the Sun at the origin. 
 
  Object   Type   Distance Angle 
  Pleiades  star cluster      410    ly   60 
  Orion Nebula  nebula    1500    80 
  Betelgeuse  star       650    90 
  Deneb   star     1600  310 
  Antares  star       420  245 
  Cygnus Loop  supernova remnant   2000  315 
  Ring Nebula  nebula    2300  280 
  Owl Nebula  nebula    1900  170 
  Crab Nebula  supernova remnant    6300    80 
  Praesepe  star cluster      520  130 
  Rosette Nebula nebula   3,600  100 
  Eta Carina  nebula   7,000  160 
  Lagoon Nebula nebula   4,000  270 
  Jewel Box  star cluster   6,500  190 
 
 
Problem 1 - If you only wanted to visit the three bright stars, how many light 
years would you have to travel for a round-trip tour? 
 
 
 
 
 
 
Problem 2 - If you only wanted to visit all of the nebulas how long would your 
round-trip journey be? 
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31 Calculating Arc Lengths of Simple Functions- I 

Spirals are found in many different places in 
astronomy, from the shape of the arms in a 'spiral' galaxy, to 
the trajectory of a spacecraft traveling outward from Earth's 
orbit at constant velocity.  Figuring out spiral lengths requires a 
bit of calculus. Here's how it's done:

Step 1: Study the figure above, and use the Pythagorean 
Theorem to determine the hypotenuse length in terms of the 
other two sides. It should look like the equation to the left. 

2 2( ) ( )s x yΔ = Δ + Δ  

Step 2:  Factor out the Δx to get a new formula. 

Step 3:  Following the basic techniques of calculus, 'take the 
limit' and allow the deltas to become differentials, then use the 
integral calculus to sum-up all of the differentials along the 
curve defined by y = F(x), and between points A and B, to get 
the fundamental arc-length formula. 

The arc length formula can be re-written in polar 
coordinates too. In this case, the function, y = F(x) has 
been replaced by the polar function r(θ). 

Problem 1)  Find the arclength for the line y = mx + b  from x=3 to x=10 
 
 
 
 
Problem 2)  Find the arclength for the parabolic arc defined by y = x2 from x=1 to x=5. 
 
 
 
 
Problem 3)  Find the arclength for the logarithmic spiral R(θ) = ebθ from θ = 0 to θ = 4π if b = 1/2. 
 
 
 
 
Problem 4)  The spiral track on a CDROM is defined by the simple formula R = kq, where k 

represents the width of each track of data. If k = 1.5 microns, how long is the spiral 
track, in meters, for a standard 6.0-cm disk if the hub space is also used? 
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32 The Ant and the Turntable - Frames of Reference  

 Figuring out spiral lengths requires a bit of 
calculus. In the previous problem, we saw that the 
arc length integral can be written in polar 
coordinates where the function, y = F(x) is replaced 
by the polar function r(θ).   
 
 Because this formula is completely general, 
the variable, θ, can refer to angle, time or any other 
independent variable which leads to an arc-like 
geometry in the dependent variable defined by r(θ). 
Here is an interesting application. 
 
 An ant takes a journey from the center of a 
CDrom (r=0) to a point at its edge (r=5cm) at a 
leisurely pace of 5 cm/minute. Meanwhile, the 
turntable is spinning at 1 rotation per minute.   

 

Problem 1 - Draw a sketch, to scale,  of the turntable that shows the ant's 
motion from its own, stationary, perspective. 
 
 
Problem 2 -  Draw a free-hand sketch, to scale, of the turntable that shows the 
ant's motion from the perspective of an outside, stationary observer. 
 
 
Problem 3 -  What is the equation that describes the radial motion of the ant 
with respect to time?   
 
 
Problem 4 -  How far did the ant travel  in the radial direction in A) 15 seconds?, 
B) 60 seconds? 
 
 
Problem 5 -  Evaluate the arc length integral formula for S(t) to determine the 
length of the ant's arc between r=0 and r = 5 centimeters. 
 
 
Inquiry: Explain A) how it can be that there are two path lengths and travel 
times in the problem, but there is only one ant? and B) which of the two answers 
is correct? 
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33 The Dawn Mission: Ion Rockets and Spiral Orbits 

 Ion rocket motors provide a small but steady 
thrust, which causes a spacecraft to accelerate. The 
shape of the orbit for the spacecraft as it undergoes 
constant acceleration is a spiral path. The length of this 
path can be computed using calculus. 
 
 The arc length integral can be written in polar 
coordinates where the function, y = F(x) is replaced by 
the polar function r(θ).   
 
 Because the integrand is generally a messy one 
for most realistic cases, in the following problems, we 
will explore some simpler approximations.  

 The Dawn spacecraft was 
launched on September 27, 2007, and 
will take a spiral journey to visit the 
asteroid Vesta in February 2015.  Earth 
is located at a distance of 1.0 
Astronomical Units from the Sun (1 AU = 
150 million kilometers) and Vesta is 
located 2.36 AU from the Sun. The 
journey will take about 66,000 hours and 
make about 3 loops around Earth's orbit 
in its outward spiral as shown in the 
figure to the left. 

Problem 1 -  Suppose that the Dawn spacecraft travels at a constant outward speed 
from Earth's orbit.  If we approximate the motion of the spacecraft by  X = R cosθ,  
Y=Rsinθ and R = 1 + 0.08 θ, where the angular measure is in radians, show that the 
path taken by Dawn is a simple spiral. 
 
 
Problem 2 -  From the equation for R(θ), compute the total path length of the spiral 
from R=1.0 to R = 2.36 AU, and give the answer in kilometers. About what is the 
spacecraft's average speed during the journey in kilometers/hour? [Note: Feel free to 
use a Table of Integrals!] 
 
 
Problem 3 -  The previous two problems were purely 'kinematic'  which means that 
the spiral path was determined, not by the action of physical forces, but by employing 
a mathematical approximation. The equation for R(θ) is based on constant-speed 
motion, and not upon actual accelerations caused by gravity or the action of ion 
engine itself. Let's improve this kinematic model by approximating the radial motion 
by a uniform acceleration given by R(θ) = 1/2 A θ2 where we will approximate the net 
acceleration of the spacecraft in its journey as A = 0.009.  What is the total distance 
traveled by Dawn in kilometers, and its average speed in kilometers/hour? 
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34 Modeling a Planetary Nebula 

Planetary nebula are the outer 
atmospheres of dying stars ejected into 
space. Astronomers model these nebulae to 
learn about the total mass they contain, and 
the details of how they were ejected. The 
image is of a rare, spherical-shell planetary 
nebula, Abell 38, photographed by 
astronomer George Jacoby (WIYN 
Observatory) and his colleagues using the 
giant, 4-meter Mayall Telescope at Kitt 
Peak, Arizona.  Abell-38 is located 7,000 
light years away in the constellation 
Hercules. The nebula is 5 light years in 
diameter and 1/3 light year thick. For other 
spectacular nebula images, visit the Hubble 
Space Telescope archive at  
http://hubblesite.org/newscenter/archive/releases/nebula 

Statement of the Problem:  
 We want to calculate the intensity of 
the nebula (shaded shell) at different radii 
from its center (b) along a series of chords 
through the nebula (AB). The intensity, I(b) 
will be proportional to the density of gas 
within the nebula, which we define as D(r).  
 The shell is spherically-symmetric, 
as is D(r), so there are obvious symmetries 
in the geometry of the problem.  
 Because D(r) varies along the chord 
AB, we have to sum-up the contribution to 
I(b) from each spot along AB.  
 

Problem 1 - Using the Pythagorean Theorem, define the distance L between the two points 
on segment AB in terms of b and r.  
 
Problem 2 - Calculate the differential, dL in terms of r and b, assuming b is a constant. 
 
Problem 3 - Construct the differential dI(b,r) = D(r)dL explicitly in terms of r and b. 
 
Problem 4 - Integrate dI(b,r) to get I(b) with the assumption that D(r) = 0 from r = 0 to r = Ri, 
and is constant throughout the shell from r=Ri to r = R0, and that D(r) = D0. 
 
Problem 5 - Assuming that all linear units are in light years, plot the 1-d function I(b) for Ri = 
2.2 and R0 = 2.5, and from b=0 to b=5.0, and compare it with Abell-38. Does Abell-38 seem 
to follow a constant-density shell model? 

Space Math                                http://spacemath.gsfc.nasa.gov 
 



35  The International Space Station - Follow that graph! 

 At the present time, the International Space Station is losing about 300 feet 
(90 meters) of altitude every day. Its current altitude is about 345 km after a 7.0-
km re-boost by the Automated Transfer Vehicle, Jules Vern spacecraft on June 
20, 2008. The graph below shows the ISS altitude since 1999. 

 The drag of Earth's atmosphere causes the ISS altitude to decrease each day, and 
this is accelerated during sunspot maximum (between 2000-2001) when the dense 
atmosphere extends to a much higher altitude.  At altitudes below about 200 km, 
spacecraft orbits decay and burn up within a week.   
 
Problem 1 - From the present trends, what do you expect the altitude of the ISS to be 
between 2010 until its retirement year around 2020? 
 
 
Problem 2 - Sunspot maximum will occur between 2012-2014, and we might expect a 50-
km decline in altitude during this period if the solar activity weaker than the peak in 2000, 
which is currently forecasted. Including this effect, what might be the altitude of the ISS in 
2020? Is the ISS  in danger of atmospheric burn-up? 
 
 
Problem 3 - What are the uncertainties in predicting ISS re-entry, and what strategy 
would you use if you were the Program Manager for the ISS? 
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36   Why are hot things red? 

 
 
 

         When radiation is produced by a 
heated body, the intensity of electromagnetic 
radiation depends on frequency 
(wavelength) in a manner defined by the 
Planck Function. There is a simple law, 
called the Wein Displacement Law, that 
relates the temperature of a body to the 
frequency where the Planck curve has its 
maximum value.  In this exercise, we will 
use two different methods to derive this law. 

Temperature 
(K) 

Peak 
Wavelength 
(microns) 

10,000 0.2898 
9,000 0.322 
8,000 0.362 
7,000 0.414 
6,000 0.483 
5,000 0.579 
4,000 0.724 
3,000 0.966 
2,000 1.449 
1,000 2.828 
500 5.796 
300 9.660 

 where:  A = 3.747 x 1014 watts microns4/m2/str 

Algebra Problem:    
 
A) From the data in the table, use a calculator to find a formula that fits the data. 
Some possibilities might include a linear equation,  λ = a T,  power laws such as  
λ = b T-1, λ = c T-2 or λ = d T2, λ = e T3  or exponential functions such as λ = f e(gT) 
where a,b,c,d,e,f,g are constants determined by the fitting process.  B) Which 
function fits the tabulated data the best, and what is the value of the constant? 
 
Calculus Problem:    
 
A) Find Equation 2 for the maximum of the function I(λ,T) by differentiating with 
respect to the wavelength, λ, and setting the derivative equal to zero.   
 
B) Find the solution to Equation 2, which you found in Part A, using the technique of 
'successive approximation', or 'trial and error'. ( Note, ignore trivial solutions involving 
zero! From this iterated solution, find the form of the function for the maximum 
wavelength as a function of temperature.) 
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37 Collapsing Gas Clouds - Stability 

 Gas clouds in interstellar 
space are acted upon by 
external pressure and their own 
gravity, and would otherwise 
collapse, but if they are hot 
enough, they  can remain stable 
for a long time. That seems to 
be the case for objects called 
Bok Globules. 
 This photo of Thackeray's 
Globule (IC-2944) taken by the 
Hubble Space Telescope may 
be a stable dark cloud 
containing 10 times the mass of 
our sun at a temperature of less 
than 100 K. 

 A gas sphere with a radius, R,  a mass, M, and a temperature, T, is subject 
to an external pressure, P so that 

where k, G and μ are constants.  
 
Problem 1 - At what minimum radius will the cloud start to collapse for a given 
mass and temperature? 
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38 The Big Bang - Cosmic Expansion 

According to Big Bang 
theory, the scale of the universe 
increases with time at a rate that 
depends on the density of matter, 
ρ, and the size of the cosmological 
constant, Λ. This is defined by the 
fundamental equation to the left. 

dR 8π ρG Λ
= + R2

dt 3 3R  

Problem 1 - Determine the general form of the integral that relates the time, t, to the 
value of the scale factor, R; Solve the integral for the time, t, but do not solve the integral 
for R. 
 
Problem 2 - Transform the integral for R to a new variable, U, such that U =  (A/C)1/3 R 
where  A = Λ /3  and C = 8πGρ/3.    
 
Problem 3 -  Solve the integral for two special cases A) The Inflationary Universe case 
where U >> 1 and B) the matter-dominated universe case where U << 1. 
 
Problem 4 -  Hubbel's Constant is a measure of the rate of expansion of the universe. It 
is defined as H = 1/R (dR/dt).  Find the formula for Hubbel's Constant for the two 
cosmological cases described in Problem 3. 
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39 Space Math Differentiation - "Ch..Ch..Ch..Changes" 

 There are many situations in 
which differentiation has to be performed 
on formulae in astrophysics. Many 
objects such as stars and galaxies 
display 'differential rotation' which leads 
to many interesting and unusual 
phenomena. The formula describing 
these phenomena are usually 'differential 
equations' that relate changes in one 
quantity to changes in another.  
 Here are some popular equations 
used in astrophysics whose 
differentiation will test your basic skills! 
 
Image: Model of solar differential rotation 
(Courtesy: Stanford Solar Center / NASA SOHO) 

 
Problem 1 -   Find dm/dv - the rate of 
change of mass with velocity near the 
speed of light. 
 
 
Problem 2 - Find dL/dT - The rate of 
change of a star's luminosity with its 
temperature. 
 
Problem 3 - Find dR/dt - The rate of 
change of the size of an expanding 
supernova remnant with time (in other 
words, its expansion speed!). 
 
Problem 4 - Find dV/dz - The rate of 
change of the apparent speed of a body 
with its gravitational redshift. 
 
 
Problem 5 - Find dD/dN - the rate of 
change of the Debye shielding radius in a 
plasma with a change in the density of the 
plasma. 
 
Problem 6 - Find (1/m2) dΛ/dD - the rate 
of change of the energy of empty space as 
you change the number of dimensions to 
space. 
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40 Space Shuttle Launch Trajectory - I 

 The trajectory of the 
Space Shuttle during the first 5 
minutes of the launch of STS-30 
can be represented by an 
equation for its altitude  
 
h(T) = 2008 - 0.047 T3 + 18.3 T2 - 345T 
 
and an equation for its down-
range distance due-east 
 
R(T) = 4680 e0.029T

 
where the distances are 
provided in units of feet 
commonly used by NASA 
engineers for describing 
trajectories near Earth. The 
problems below will use these 
'parametric equations of motion' 
to determine the time of the 
highest acceleration. 
 
Image: Shuttle launch as seen from a 
NASA aircraft. 

Problem 1 -  Use the parametric equations for h(T) and R(T) to determine the 
equation for the speed, S, of the Shuttle along its trajectory where dS/dt = ( (dh/dt)2 + 
(dR/dt)2 )1/2 

 

 
 
Problem 2 -  Determine the formula for the magnitude of the acceleration of the 
Shuttle using the second time derivatives of the parametric equations. 
 
 
 
Problem 3 - From your answer to Problem 2, A) find the time at which the 
acceleration is an extremum, and specifically, a maximum along the modeled 
trajectory. B) What is the acceleration in feet/sec2 at this time? C) If the acceleration 
of gravity at the earth's surface is 32 feet/sec2, how many 'Gs' did the astronauts pull 
at this time? 
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41 Light Travel Times 

 NASA satellites and space probes are so far away from Earth that serious 
time delays happen when radio signals are sent to them. This is because radio 
signals travel at the speed of light, 300,000 kilometers/sec, and the distances 
from Earth to the spacecraft are huge!! 

Problem 1 -  How long will it take for a 
radio signal to travel from the satellites 
to Earth, one-way, in the above table? 
Complete the last  column to find out! 
 
Problem 2 - Suppose a radio message 
needs to be sent at 01:20 on February 
15, 2008. To the nearest minute, what 
time would it be when the message 
arrived at each spacecraft, and when 
the data arrived back at Earth? 
 
Problem 3 - When Jupiter was located 
farthest from the Sun (aphelion), it was 
at a distance of 667 million kilometers 
from Earth. When it was closest to the 
sun (perihelion) it was 590.5 million 
kilometers from Earth. Suppose you 
are calculating a schedule for when the 
satellite Io will be exactly at dead-
center of Jupiter's disk based on when 
you saw the transit at perihelion. How 
much of a schedule change will you 
see when you observe the transit at 
aphelion, and will the transit occur 
sooner or later than you predicted? 
 

Spacecraft Distance 
(km) 

Seconds 

Themis P2 30,000  
LRO 382,000  
ACE 1.5 million  

MESSENGER 50 million  
STEREO-A 111 million  
Mars Orbiter 220 million  

Ulysses 800 million  
Cassini 1.8 billion  

Voyager 2 13 billion  

This image was taken by the Hubble Space 
Telescope and shows the satellite Io The 
moon is the small disk to the left, and its 
shadow appears to the right of center. 
(Courtesy  J. Spenser, Lowell Observatory 
and NASA). 
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42 Cross Sections and Collision Times 

Whether you are talking about 
atoms in a gas, stars in a star cluster, or 
galaxies in intergalactic space, 
eventually some members will collide 
with each other. Predicting the collision 
times for various systems is an important 
way to estimate important events in their 
history. 
 
Image: Seyfert's Sextet galaxy cluster showing 
collisions (Courtesy Hubble Space Telescope) 

Problem 1 - Cross Sectional Area: Draw two circles on a paper that overlap. These 
represent the geometrical cross sectional areas of two bodies. For example, the cross 
sectional area of a marble with a radius of 5 millimeters is A = π (5mm)2 = 78.5 mm2. Find 
the cross sectional areas of: A) an oxygen atom with a radius of  50 picometers (in 
square meters);  B) a star with a radius of 698,000 km (in square kilometers); C) a galaxy 
with a radius of 50,000 light years (in square light years).  (1 ly = 9.4 trillion km) 
 
Problem 2 - Swept out volume: A moving body sweeps out a cylindrical volume whose 
base area equals the bodies cross sectional area, and whose height equals the speed of 
the body times the elapsed time. Calculate the cylindrical volumes, in cubic meters, for; 
A) an atom of oxygen traveling at 500 meters/sec for 10 seconds; B) a star in the Omega 
Centauri cluster traveling at  22 km/sec for 1 million years (in cubic light years); C) the 
Milky Way galaxy traveling at 200 km/sec for 100 million years (in cubic light years). (1 
year  = 31 million seconds) 
 
Problem 3 - Average particle volume: The average volume occupied by a body in a 
system depends on the volume of the system and the number of bodies present. The 
'number density' measures the number of particles divided by the volume of the system. 
The inverse of this number is the average volume per particle. Calculate the average 
volume for the following bodies: A) Sea-level atmosphere with 3 x 1025 atoms/cubic 
meter; B) Omega Centauri cluster with a diameter of 160 light years and containing 10 
million stars (in stars per cubic light year) ; C) The Local Group of galaxies containing 35 
galaxies including the Milky Way, with a diameter of 10 million light years (in galaxies per 
cubic mega light year).  
 
Problem 4 - Collision time: The collision time is the time it takes a body to sweep out 
the same volume as is occupied by an average particle in the system. It is given by the 
formula T = 1/(N A V) where N is the density of particles, V is their average speed, and A 
is their average cross-sectional area. (All units should be in terms of meters and 
seconds.) From the area calculated in Problem 1, the speeds given in Problem 2, and the 
average particle densities from Problem 3, compute the particle collision times for A) an 
oxygen atom at sea level (in nanoseconds); B) a star in the Omega Centauri cluster (in 
years) and C) a galaxy in the Local Group (in years). 
 
Inquiry Question:  There are many more stars than galaxies, so why is it that galaxies 
collide nearly a million times more often? 
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43 Spectral Classification of Stars 

The advent of the spectroscope 
in the 1800's allowed astronomers to 
study the temperatures and 
compositions of stars, and to classify 
stars according to their spectral 
similarities. At first, 26 classes were 
defined; one for each letter in the 
alphabet. But only 7 are actually major 
classes, and these survive today as 
the series 'O, B, A, F, G, K, M'.  This 
series follows decreasing star 
temperatures from 30,000 K (O-type) 
to 3,000 K (M-type). 
 
Images courtesy: Helmut Abt (NOAA). 

Problem 1 - Sort the five stellar spectra according to their closest matches with 
the standard spectra at the top of the page. (Note, the spectra may not be to the 
same scale, aligned vertically, and may even be stretched!) 
 
 
Problem 2 - The star α Lyr (Alpha Lyra) has a temperature of 10,000 K and β 
Aqr (Beta Aquarii) has a temperature of 5,000 K. What do you notice about the 
pattern of spectral lines as you change the star's temperature? 
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44 Stellar Temperature, Size and Power 

 The amount of power that 
a star produces in light is related 
to the temperature of its surface 
and the area of the star. The 
hotter a surface is, the more 
light it produces. The bigger a 
star is, the more surface it has. 
When these relationships are 
combined, two stars at the same 
temperature can be vastly 
different in brightness because 
of their sizes. 
 
Image: Betelgeuse (Hubble Space Telescope.)  
It is 950 times bigger than the sun! 

 The basic formula that relates stellar light output (called luminosity) with 
the surface area of a star, and the temperature of the star, is L =  A x F where the 
star is assumed to be spherical with a surface area of A = 4 π R2, and the 
radiation emitted by a unit area of its surface (called the flux) is given by F = σ T4.  
The constant, σ, is the Stefan-Boltzman radiation constant and it has a value of  σ 
= 5.67 x 10-5 ergs/ (cm2 sec deg4). The luminosity, L, will be expressed in power 
units of ergs/sec if the radius, R, is expressed in centimeters, and the 
temperature, T, is expressed in degrees Kelvin. The formula then becomes, 
 
    L =  4 π  R2 σ T4

 
 
Problem 1 -  The Sun has a temperature of 5700 Kelvins and a radius of 6.96 x 105 
kilometers, what is its luminosity in A) ergs/sec? B) Watts?  (Note: 1 watt = 107 ergs/sec). 
 
Problem 2 -  The red supergiant Antares in the constellation Scorpius, has a temperature 
of 3,500 K and a radius of 700 times the radius of the sun. What is its luminosity in A) 
ergs/sec? B) multiples of the solar luminosity? 
 
Problem 3 - The nearby star, Sirius, has a temperature of 9,200 K and a radius of 1.76 
times our Sun, while its white dwarf companion has a temperature of 27,400 K and a 
radius of 4,900 kilometers. What are the luminosities of Sirius-A and Sirius-B compared 
to our Sun?  
 
Calculus: 
 
Problem 4 - Compute the total derivative of L(R,T). If a star's radius increases by 10% 
and its temperature increases by 5%, by how much will the luminosity of the star change 
if its original state is similar to that of the star Antares? From your answer, can you 
explain how a star's temperature could change without altering the luminosity of the star. 
Give an example of this relationship using the star Antares! 
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45 Fuel Level in a Spherical Tank 

 Spherical tanks are found in many 
different situations, from the storage of 
cryogenic liquids, to fuel tanks.  Under 
the influence of gravity, or acceleration, 
the liquid will settle in a way such that it 
fills the interior of the tank up to a height, 
h. We would like to know how full the 
tank is by measuring h and relating it to 
the remaining volume of the liquid. A 
sensor can then be designed to measure 
where the surface of the liquid is, and 
from this derive h.

Problem 1 -  Slice the fluid into a series of vertically stacked disks with a radius r(h) and 
a thickness dh. What is the general formula for the radius of each disk? 
 
 
  
Problem 2 -  Set up the integral for the volume of the fluid and solve the integral. 
 
 
 
Problem 3 -   Assume that fluid is being withdrawn from the tank at a fixed rate  
dV/dt = -F. What is the equation for the change in the height of the fluid volume with 
respect to time? A) Solve for the limits h<<R and h>>R. B) Solve graphically for R=1 
meter, F=100 cm3/min. (Hint: select values for h and solve for t). 
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46 The Mass of the Van Allen Radiation Belts 

 The van Allen 
Radiation Belts were 
discovered in the late-1950's 
at the dawn of the Space 
Age. They are high-energy 
particles trapped by Earth's 
magnetic field into donut-
shaped clouds.  
 

Earth's inner magnetic field has a 'bar magnet' shape that follows the formula  
 
    R(λ) = L cos2λ  
 
where the angle, λ, is the magnetic latitude of the magnetic field line emerging from Earth's 
surface, and L is the distance to where that field line passes through the magnetic 
equatorial plane of the field. The distance, L, is conveniently expressed in multiples of 
Earth's radius (1 Re = 6378 kilometers) so that L=2 Re indicates a field line that intersects  
Earth’s magnetic equatorial plane at a physical distance of 2 x 6378 km = 12,756 km from 
Earth's center.  
 To draw a particular field line, you select L, and then plot R for different values of λ.  
Because the van Allen particles follow paths along these field lines, the shape of the 
radiation belts is closely related to the shape of the magnetic field lines.  
 
Problem 1 -  Using the field line equation, plot in polar coordinates a field line at the outer 
boundary of the van Allen Belts for which L = 6 Re, and on the same plot, a field line at the 
inner boundary where L=0.5 Re. Shade-in the region bounded by these two field lines. 
 
 
Problem 2 – If you rotate the shaded region in Problem 1 you get a 3-d figure which looks 
a lot like two nested toroids. Approximate the  volume of the shaded region by using the 
equation for the volume of a torus given by V = 2 π2 r R2  where R is the internal radius of 
the circular cross-section of the torus, and r is the distance from the Origin (Earth) to the 
central axis of the torus. (Think of the volume as turning the torus into a cylinder with a 
cross section of πR2 and a height of 2 π r).  
 
Problem 3 - Assuming that the maximum, average density of the van Allen Belts is about 
100 protons/cm3, and that the mass of a proton is 1.6 x 10-24 grams, what is the total mass 
of the van Allen Belts in kilograms? 
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47 The Io Plasma Torus 

 The satellite of Jupiter, Io, 
is a volcanically active moon 
that ejects 1,000 kilograms of 
ionized gas into space every 
second. This gas forms a torus 
encircling Jupiter along the orbit 
of Io. We will estimate the total 
mass of this gas based on data 
from the NASA Cassini and 
Galileo spacecraft. 
 
Image: Io plasma torus (Courtesy 
NASA/Cassini)

Problem 1 - Galileo measurements obtained in 2001 indicated that the density of 
neutral sodium atoms in the torus is about 35 atoms/cm3. The spacecraft also 
determined that the inner boundary of the torus is at about  5 Rj, while the outer 
boundary is at about 8 Rj.   ( 1 Rj = 71,300 km).  A torus is defined by the radius of 
the ring from its center, R, and the radius of the circular cross section through the 
donut, r.  What are the dimensions, in kilometers,  of the Io torus based on the 
information provided by Galileo? 
 
 
Problem 2 - Think of a torus as a curled up cylinder. What is the general formula 
for the volume of a torus with radii R and r? 
 
 
Problem 3 - From the dimensions of the Io torus, what is the volume of the Io torus 
in cubic meters? 
 
 
Problem 4 - From the density of sodium atoms in the torus, what is A) the total 
number of sodium atoms in the torus? B) If the mass of a sodium atom is 3.7 x 10-20 
kilograms, what is the total mass of the Io torus in metric tons? 
 
 
 
Calculus: 
 
Problem 5 - Using the 'washer method' in integral calculus, derive the formula for 
the volume of a torus with a radius equal to R, and a cross-section defined by the 
formula x2 + y2 = r2. The torus is formed by revolving the cross section about the Y 
axis. 
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48 Pan's Highway - Saturn's Rings 

  The Encke Gap is a 
prominent feature of Saturn's outer 
A-ring system that has been 
observed since the 1830's.  The 
arrival of the Cassini spacecraft in 
July 2004 revealed the cause for 
this gap. A small moonlet called 
Pan clears out the ring debris in 
this region every 12 hours as it 
orbits Saturn! 

Problem 1 - This image was taken by Cassini in 2007 and at the satellite's distance of 1 
million kilometers, spans a field of view of 5,700 km x 4,400 km. With the help of a 
millimeter ruler, what is the scale of the image in kilometers per millimeter?     
 
Problem 2 - Pan is that bright spot within the black zone of the Encke Gap. About how 
many kilometers in diameter is Pan?    
  
Problem 3 - About how wide is the Encke Gap? 
 
Problem 4 - About what is the smallest feature you can discern in the photo? 
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49 Tidal Forces - Let 'er Rip! 

 

 As the Moon orbits Earth, 
its gravitational pull raises the 
familiar tides in the ocean water, 
but did you know that it also 
raises 'earth tides' in the crust of 
earth? These tides are up to 50 
centimeters in height and span 
continent-sized areas. The Earth 
also raises 'body tides' on the 
moon with a height of 5 meters! 
 Now imagine that the 
moon were so close that it could 
no longer hold itself together 
against these tidal deformations. 
The distance were Earth's 
gravity will 'tidally disrupt' a solid 
satellite like the moon is called 
the tidal radius.  One of the most 
dramatic examples of this is the 
rings of Saturn, where a nearby 
moon was disrupted, or 
prevented from forming in the 
first place! 
 
Images courtesy NASA/Hubble and Cassini. 

Problem 1 - The location of the tidal radius (also called the Roche Limit) for two 
bodies is given by the formula  d = 2.4x R (ρM/ρm)1/3 where ρM is the density of the 
primary body,  ρm is the density of the satellite, and R is the radius of the main 
body. For the Earth-Moon system, what is the Roche Limit if R = 6,378 km,  ρM = 
5.5 gm/cm3 and  ρm = 2.5 gm/cm3?  (Note, the Roche Limit, d, will be in kilometers 
if  R  is also in kilometers, and so long as the densities are  in the same units.) 
 
Problem 2 - Saturn's moons are made of ice with a density of about 1.2 gm/cm3 .If 
Saturn's density is  0.7 gm/cm3 and its radius is R = 58,000 km, how does its 
Roche Limit compare to the span of the ring system which extends from 66,000 km 
to 480,000 km from the planet's center?  
 
Problem 3 - In searching for planets orbiting other stars, many bodies similar to 
Jupiter in mass have been found orbiting sun-like stars at distances of only 3 million 
km. What is the Roche Limit for a star like our Sun if its radius is R = 600,000 km, 
and the densities are ρ(planet) =   1.3 gm/cm3 and ρ(star) = 1.5 gm/cm3? 
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50 Are U Still Nuts? 

 That’s right… It’s time for more unit conversion exercises! 
 
Problem 1:  The Solar Constant is the amount of energy that the sun delivers to 
the surface of Earth each second. If it is measured to be 1350000 ergs/cm2 each 
second, how many watts per square meter is this? (1 watt = 10,000,000 ergs 
each second). 

 

Problem 2:  A supermassive black hole in the center of the quasar 3C273 
swallows one star a year, and the heated gases emit 1.3 x 1053 ergs of energy. 
How much energy does 3C273 emit, in watts? (1 year = 31,000,000 seconds). 

 

Problem 3:  An astronaut is preparing a meal that includes 50 grams of cocoa 
mixed with 8 ounces of milk. What is the concentration of the chocolate in 
kilograms per liter? (128 oz = 1 gallon; and 9 gallons = 34 liters) 
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51 Fitting Periodic Functions - Distant Planets 

 

 A team of French and Swiss astronomers have discovered one of the 
lightest exoplanets ever found using the HARPS instrument on ESO's 3.6-m 
telescope at La Silla (Chile). They measured the speed of the star, Gleise-581 
that the planet orbits,  and plotted the data as shown above. The marks on the 
horizontal axis are spaced every  0.54 days apart starting at 0 which occurred on 
June 8, 2004. 

 Problem 1: From the data, create an estimate of the best-fit periodic 
function that follows the trend in the data. Calculate the amplitude, offset (vertical 
shift) phase and the formula for the angle in terms of the elapsed time in days 
since the start of the plot. 

 

 Problem 2: What would you predict as the velocity of the star on June 19, 
2004?  
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52 The Limiting Behavior of Selected Functions 

 In astrophysics, many different kinds of formulae are derived for the 
interaction of radiation with matter. Often, astrophysicists want to know the ‘limiting 
behavior’ of the equations for extreme conditions. Here are a few examples.  

Problem 1 : The equation above is the Klien and Nishina formula for the interaction 
of a high-energy photon with an electron. X is the ratio of the energy carried by the 
photon (E = hv) compared to the rest mass energy of the electron (E = mc2

). What is 
the form of this equation in the limit for large X? 
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53 Star Cluster Math 

 Astronomers classify stars so that they can study their similarities and 
differences.   A very common way to classify stars is by their temperature. 
This scale assigns a letter from the set [O, B, A, F, G, K, M] to represent stars 
with temperatures from 30,000 C (O-type) and 6,000 C (G-type), to 3,000 C 
(M-type).  
 
Problem 1 – An astronomer studies a sample of stars in a cluster and 
identifies 6 as G-type like our Sun, 12 as M-type  like Antares, and 2 stars as 
O-type like Rigel. Circle the pattern, above, that represents this sample. 
 
Problem 2 – What fraction of the stars in the sample are G-type? 
 
          A)  6/9                  B)  20/6               C)  6/20              D)  6/8 
 
 
Problem 3 – What fraction of the G and M-type stars in the cluster are G-
type? 
 
 A)  12/18              B)  6/12              C) 12/6                D)  6/18 
 
Problem 4 – If you selected 2 stars randomly from this cluster, which 
calculation would give the probability that these would both be O-type stars? 
 
          A)  1/20 x 1/20      B) 2/20 x 1/20     C)  1/20 x 1/19    D) 2/20 x 1/19 
 
Problem 5 – A second star cluster has a total of 2,040 stars. If the proportion 
of O, G and M-types stars is the same as in the first cluster, how many G-type 
stars would be present? 
 
 A)  612                 B)  340                C) 1428              D) 680 

Space Math                                http://spacemath.gsfc.nasa.gov 
 



54Magnetic Force in Three Dimensions 

  A magnetic field is more complicated in shape than a gravitational field 
because magnetic fields have a property called ‘polarity’. All magnets have a 
North and South magnetic pole, and depending on where you are in the space 
near a magnet, the force you feel will be different than for gravity. The strength 
of the magnetic field along each of the three directions in space (X, Y and Z) is 
given by the formulas: 

 The variables X, Y and Z represent 
the distance to a point in space in terms 
of the radius of Earth. For example, ‘X = 
2.4’ means a physical distance of 2.4 
times the radius of the earth or (2.4 x 
6378 km) = 15,307 kilometers. Any point 
in space near Earth can be described by 
its address (X, Y, Z). The variable r is the 
distance from the point at (X, Y, Z) to the 
center of Earth in units of the radius of 
Earth. M is a constant equal to 31,000. 
 
 The formula for the three 
quantities Bx, By and Bz gives their 
strengths in units of nanoTeslas (nT) – a 
measure of magnetic strength along each 
of the three directions in space. 

Problem  1 -  Evaluate these three equations at the orbit of communications 
satellites for the case where x = 7.0, y = 0.0, z = 0.0 and r = 7.0 
 
 
 
 
 
 
Problem  2 -  Evaluate these three equations in the Van Allen Belts for the case 
where x = 0.38, y = 0.19, z = 1.73 and r = 3.0 
 
 
 
 
 
 
Problem 3 - Use the Pythagorean Theorem in 3-dimensions to determine the total 
strength of Earth's magnetic field for problems 1, 2 and 3. 
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55   Measuring Star Temperatures 

 
 
 

 Careful measurements of a star's light spectrum gives astronomers clues about its temperature. 
For example, incandescent bodies that have a red glow are 'cool' while bodies with a yellow or blue color 
are 'hot'. This can be made more precise by measuring very carefully exactly how much light a star 
produces at many different wavelengths. 
 In 1900, physicist Max Planck worked out the mathematical details for how to exactly predict a 
body's spectrum once its temperature is known. The curve is therefore called a Planck 'black body' curve. 
It represents the brightness at different wavelengths of the light emitted from a perfectly absorbing 'black' 
body at a particular temperature. 

 From the mathematical 
properties of the Planck Curve, it is 
possible to determine a relationship 
between the temperature of the body 
and the wavelength where most of its 
light occurs - the peak in the curve. This 
relationship is called the Wein 
Displacement Law and looks like this: 
 
         2897000  Kelvins 
Temperature = ------------------------ 
                              Wavelength 
 
Where the temperature will be in units of 
Kelvin degrees, and the wavelength will 
be in units of  nanometers. 

 The lower plot shows 
measurements of the spectrum of the 
star HD107146. The horizontal axis is in 
units of nanometers (nm).  
 
Problem 1 - Based on the overall shape 
of  the curve, and the wavelength where 
most of the light is being emitted, use the 
Wein Displacement Law to determine the 
temperature of  HD107146. 
 
 
Problem 2 - What would be the peak 
wavelengths of the following stars in 
nanometers.  
 
A) Antares .......................   3,100 K  
B) Zeta Orionis……...…… 30,000 K  
C) Vega …………………..    9,300 K 
D) Regulus…………...…..  13,000 K 
E) Canopus……………….   7,300 K 
F) OTS-44 brown dwarf…   2,300 K 
G) Sun…………………….    5,770 K 

Spectrum of HD107416
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56 THEMIS: A Magnetic Case of 'What came first?' 
 The NASA, THEMIS satellite constellation consists of 
five satellites, P1, P2, P3, P4 and P5,  launched on February 
17, 2007. The scientific goal was to determine the sequence 
of events connecting disturbances in Earth's distant magnetic 
field (a process called magnetic reconnection), with the start 
of  magnetic storms and aurora near Earth.  
 
 The science team assembled the data shown in the 
graphs to the left. The event that triggered this sequence was 
a 'magnetic reconnection' in Earth's magnetic field that took 
place at about 4:50:03 at a location about 160,000 km from 
Earth. (Note these plots have been greatly simplified for 
clarity! See the original article in the journal  Science, August 
15, 2008, vol. 321, pp.931: Figure 2 and 3) 
 
 
Problem 1 - At about what times do each of the plots note a 
significant change in the quantity being measured? 
 
 
Problem 2 - What is the time sequence of events based on 
your answers to Problem 1? 
 
 
Problem 3 - How long was the elapsed time between the 
increase in particle velocity at the P3 satellite, and the 
enhancement of the auroral electrojet? 
 
 
Problem 4 - The P3 satellite was located 74,000 km from 
Earth. If the auroral electrojet is a stream of charged particles 
that flows in Earth's upper atmosphere (300 km from the 
surface) what was the speed of the event in km/sec between 
the P3 location and when the electrojet started to form? 
 
 
Problem 5 - What was the time difference between the 
magnetic reconnection event at 04:50:03 and the start of the 
auroral change in latitude? 
 
 
Problem 6 - How fast did the particles travel from the 
reconnection region to the Earth when the auroral 'substorm' 
began? 
 
 
Problem 7 -  Before the THEMIS observations, one theory 
said that the disturbances near the P3 satellite would come 
before the reconnection occurred. What does the data say 
about this theory? 
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57 Unit Conversions   III 
  1 Astronomical Unit =  1.0 AU = 1.49 x 108 kilometers 
  1 Parsec = 3.26 Light years = 3 x 1018 centimeters = 206,265 AU 
  1 Watt = 107 ergs/sec 
  1 Star = 2 x 1033 grams 
1 Yard = 36 inches                  1 meter = 39.37 inches                    1 mile = 5,280 feet 
1 Liter = 1000 cm3                   1 inch = 2.54 centimeters             1 kilogram = 2.2 pounds 
1 Gallon = 3.78 Liters            1 kilometer = 0.62 miles 

Problem 1 – Convert 11.3 square feet into square centimeters. 
 
Problem 2 – Convert 250 cubic inches into cubic meters. 
 
Problem 3 – Convert 1000 watts/meter2 into watts/foot2

 
Problem 4 – Convert  5 miles into kilometers. 
 
Problem 5 – Convert 1 year into seconds. 
 
Problem 6 – Convert 1 km/sec into parsecs per million years. 
 
Problem 7 -  A house is being fitted for solar panels. The roof measures 50 feet x 28 
feet. The solar panels cost $1.00/cm2 and generate 0.03 watts/cm2. A) What is the 
maximum electricity generation for the roof in kilowatts? B) How much would the solar 
panels cost to install? C) What would be the owners cost for the electricity in dollars 
per watt? 
 
Problem 8 – A box of cereal measures 5 cm x 20 cm x 40 cm and contains 10,000 
Froot Loops. What is the volume of a single Froot Loop in cubic millimeters? 
 
Problem 9 – In city driving, a British 2002 Jaguar is advertised as having a gas 
mileage of 13.7 liters per 100 km, and a 2002 American Mustang has a mileage of 17 
mpg. Which car gets the best gas mileage? 
  
Problem 10 – The Space Shuttle used 800,000 gallons of rocket fuel to travel 400 km 
into space. If one gallon of rocket fuel has the same energy as 5 gallons of gasoline, 
what is the equivalent gas mileage of the Space Shuttle in gallons of gasoline per 
mile? 
 
Problem 11 – The length of an Earth day increases by 0.0015 seconds every century. 
How long will a day be in 3 billion years from now? 
 
Problem 12 – The density of matter in the Milky Way galaxy is 7.0 x 10-24 grams/cm3. 
How many stars are in a cube that is 10 light years on a side? 
 
Problem 13 – At a speed of 300,000 km/sec, how far does light travel in miles in 1 
year? 
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58 'Can you hear me now?': getting the message across 
 Have you ever wondered why some radio stations come in clearly in your radio, 
while others can barely be heard no matter how you crank up the volume? The reception of 
a radio signal depends on two very important quantities. The first is how much power the 
radio station is broadcasting. The second is how far that station is from you.  
 Some radio stations broadcast only at 100 watts, while others transmit over 50,000 
watts of radio power. Imagine a 5-watt light bulb and a 100-watt light bulb. Which one do 
you think will be easier to see from across the room, or at 100-meters? 
 The brightness of a lamp, or a radio station, is measured by the amount of power 
that is delivered to a square-meter of area. We call this physical unit 'intensity' and 
measure its quantity in watts per square-meter (W/m2). Because most kinds of lights and 
radio stations broadcast their power over a spherical volume, the intensity of a source is 
easily computed by dividing its power, P,  by the surface area of a sphere whose radius, D, 
equals your distance from the source. The formula is just P / 4πD2.   

Transmitter Distance 
(km) 

Power 
(watts) 

Intensity 
(watts/m2) 

AM Station 1000 50,000 3.9 x 10-9

TV Station 100 50,000  

Cell Phone 1 0.3  

THEMIS P1 160,000 3  

STEREO A 15 million 10  

ACE 1.5 million 5  

MESSENGER 50 million 15  

Mars Orbiter 220 million 100  

Cassini 1.4 billion 20  

Ulysses 800 million 5  

Voyager 2 13 billion 40  

Problem 1 - Fill out the last column in the table to find the intensity of the radio 
signal at Earth. (Use Scientific Notation to an accuracy of one decimal place.) 
 
Problem 2 - The signal from the Voyager-2 spacecraft, located beyond the orbit of 
Pluto, is just detectable by sensitive receivers of the Deep Space network on Earth. 
How far away would the AM radio station be to just be detectable by the DSN? 
Express the answer in kilometers, Astronomical Units (1 AU = 150 million 
kilometers),  and light years. (Note 1 light year = 9.5 trillion km). 
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59 The STEREO Mission: getting the message across 
 In 2007, NASA launched two satellites, STEREO-A and STEREO-B that were to 
slowly drift away from Earth in opposite directions, taking 'stereo' images of the Sun as 
they went.  Getting the information and images back to Earth posed a challenge because 
the farther away they drifted, the weaker the signal got.  The table below gives the distance 
of STEREO-A from Earth. The satellite used a 10-watt transmitter operating at a frequency 
of 2,300 Megahertz .This, by the way, is about 10-times the frequency of a normal UHF TV 
station. 

Date Distance 
(Million 

km) 

Intensity 
(x10-24 W/m2) 

Received Power 
(x10-20 Watts) 

June-2007 24.6 1316 126 
August-2007 40.3 490  

October-2007 51.0 306  

December-2007 55.2 261  

February-2008 58.4 234  

April-2008 67.0 177  

June-2008 81.9 119  

August-2008 97.6 84  

October-2008 107.3 69  

December-2008 111.2 64  

Problem 1 - How much weaker was the radio signal from STEREO-A in 
December 2008 than in June 2007? 
 
Problem 2 - The Deep Space network radio dish has a diameter of 70-meters. 
In Column 4 calculate how many watts the dish collected from the signals sent 
during each month. 
 
Problem 3 - If the satellite sends one bit of data ( '1' or '0') every 5 seconds, 
how much energy is detected (in Joules) per bit sent in A)June 2007? and B) 
December 2008? (1 watt = 1 Joule per second). 
 
Problem 4 - Suppose the receiver cannot detect less radio energy less than 2 
x 10-25 Joules each bit. What is the largest number of bits that can be detected 
each second in A) June 2007 and B) December 2008? 
 
Problem 5 - As a spacecraft gets further and further away from Earth, what 
kinds of strategies do engineers and scientists have to use to get their data 
back to Earth? 
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60 Optimization 

 Satellites are 
designed to optimize the 
number of experiments 
they can carry, while at the 
same time keeping the 
mass and power 
requirements at a 
minimum.  The picture 
shows the octagonal 
IMAGE satellite with the 
dark solar cells attached to 
its surface.  
 Here is one example 
of a simple problem that 
can be encountered by a 
satellite designer. 

 An hexagonal satellite is designed to fit inside the nose-cone (shroud) of a 
Delta II rocket. There is only enough room for a single satellite, and it cannot have 
deployable solar panels to generate electricity using solar cells. Instead, the solar 
cells have to be mounted on the exterior surface of the satellite. At the same time, 
the satellite configuration is that of a hexagonal prism. The total volume of the 
satellite is 10 cubic meters. The solar cells will be mounted on the hexagonal top, 
bottom, and the rectangular side panels of the satellite.  
 
 
 
Problem 1 - If the width of a panel is W, and the height of the satellite is H, what are 
the dimensions of the satellite that maximize the surface area and hence the 
available power that can be generated by the solar cells? 
 
 
Problem 2 - If only 1/2 of the solar cells receive light at any one time, and the power 
they can deliver is 100 watts per square meter, what is the maximum power that this 
satellite can provide to the experiments and operating systems? 
 
 
Problem 3 - If the mass of the panels is 3 kg per square meter, what is the total 
mass of this satellite? 
 
Problem 4 – If the density  of the satellite is 1000 kilograms  per cubic meter, and 
the launch cost is $10,000 per pound, how much will it cost to place this satellite into 
orbit? (Note: 1 pound =  0.453 kilograms) 
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61 Angular Size and Velocity 

The relationship between 
the distance to an object, R, the 
objects size, L, and the angle that it 
subtends at that distance, θ, is 
given by: 

(Photo courtesy Jerry Lodriguss (Copyright 2007, 
http://www.astropix.com/HTML/SHOW DIG/055.HTM )

 To use these formulae, the units for length, L, and distance, R, must be 
identical. 
 
Problem 1 - You spot your friend (L = 2 meters) at a distance of 100 meters. What 
is her angular size in arcminutes? 
 
Problem 2 - The Sun is located 150 million kilometers from Earth and has a radius 
of 696.000 kilometers, what is its angular diameter in arcminutes? 
 
Problem 3 - How far away, in meters, would a dime (1 centimeter) have to be so 
that its angular size is exactly one arcsecond? 
 
Problem 4 - The spectacular photo above shows the International Space Station 
streaking across the disk of the Sun. If the ISS was located 379 kilometers from the 
camera, and the ISS measured 73 meters across, what was its angular size in 
arcseconds? 
 
Problem 5 - The orbital speed of the space station is 7.4 kilometers/second. If its 
distance traveled in 1 second is 7.4 kilometers, A) what was the angle, in 
arcminutes, that  it moved through in one second as seen from the location of the 
camera? B) What was its angular speed in arcminutes/second? 
 
Problem 6 - Given the diameter of the Sun in arcminutes (Problem 2), and the ISS 
angular speed (Problem 5) how long, in seconds, did it take the ISS to travel across 
the face of the sun? 
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62 Hubble Sees a Distant Planet 

The bright star Fomalhaut, in the constellation Piscis Austrinus (The 
Southern Fish) is only 25 light years away. It is 2000o K hotter than the Sun, 
and nearly 17 times as luminous, but it is also much younger: Only about 200 
million years old. Astronomers have known for several decades that it has a ring 
of dust (asteroidal material) in orbit 133 AU from the star and about 25 AU wide. 
Because it is so close, it has been a favorite hunting ground in the search for 
planets beyond our solar system. In 2008 such a planet was at last discovered 
using the Hubble Space Telescope. It was the first direct photograph of a planet 
beyond our own solar system.   

In the photo below, the dusty ring can be clearly seen, but photographs 
taken in 2004 and 2006 revealed the movement of one special ‘dot’  that is now 
known to be the star’s first detected planet. The small square on the image is 
magnified in the larger inset square in the lower right to show the location of the 
planet in more detail. 

Problem 1 – The scale of the image is 2.7 AU/millimeter. If 1.0 AU = 150 million 
kilometers, how far was the planet from the star in 2006? 
 
Problem 2 – How many kilometers had the planet moved between 2004 and 2006? 
 
Problem 3 – What was the average speed of the planet between 2004 and 2006 if 1 
year = 8760 hours? 
 
Problem 4 – Assuming the orbit is circular, with the radius found from Problem 1, 
about how many years would it take the planet to make a full orbit around its star? 
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63 How to make faint things stand out in a bright world! 

 You are, by now, probably familiar with the mathematical procedure of 
averaging numbers together. When we combine images together, we can use data 
averaging to make faint things stand out more clearly. To see why this happens, 
let's imagine a picture that consists of a string of just 5 pixels (out of the 3 million 
pixels that might exist in a typical digital camera image!). Let's take a snapshot of 
exactly the same scene 9 times without moving the camera, and note the values of 
the intensity numbers in each pixel. Here's what you might get: 

Pixel 1 2 3 4 5 6 7 8 9 Average
1 120 122 120 123 110 114 112 110 110 116 
2 125 115 110 130 115 110 113 110 109  
3 130 133 131 128 130 130 131 129 130  
4 122 125 123 120 110 105 115 120 110  
5 122 125 123 109 110 114 120 105 115  

Problem 1 - Calculate the average value 
of the 9 images for each pixel by 
completing the table. The first Pixel has 
been done already. 
 
Problem 2 - Scientists discriminate 
between background 'noise' and 'source' 
whenever they look at an image. 
Background noise has the property that it 
averages to a relatively constant intensity 
that is nearly the same everywhere in the 
picture. A Source, however, tends to stand 
out in only a few pixels, and with an 
intensity brighter than the background. 
From the five pixel image, which pixels do 
you think have mostly Noise, and which 
have mostly Source? 
 
Problem 3 - How easy would it have been 
if you only had Pictures 1 and 4 to work 
with in trying to study the faint source in 
the field? 
 
Problem 4 - If you are trying to detect a 
faint source against a bright background, 
what is a good Rule of Thumb to use? 
 
Problem 5 - The two images are from the 
2MASS infrared sky survey. The bottom 
image is an average of over 5000 images 
like the one at the top. Can you find 5 stars 
that are present in the 'coadded' image 
below but not seen in the single image? 
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64 The Mathematics of Ion Rocket Engines  

 Believe it or not, NASA 
has been using ion engines for 
decades, and most commercial 
satellites use them too! 
 
 This image of a xenon 
ion engine, being tested at 
NASA's Jet Propulsion 
Laboratory, shows the faint 
glow of charged atoms being 
emitted from the engine.  It was 
used in both the Deep Space 1 
and Dawn satellites in their 
historic journeys to explore  
asteroids. The operating 
principle is simple.

 Heavy atoms such as cesium and xenon are ionized, accelerated through a high-voltage grid, 
and ejected out the back of the thruster. The momentum of the ejected heavy atoms, when multiplied 
by the trillions of atoms in the beam, produces a steady, constant thrust that can be maintained for 
years at a time. Because of  the high speed of the atoms very little mass is needed  to generate a large 
thrust over time. For the Dawn spacecraft launched in 2007, the 'fuel' mass is only 425 kilograms, but 
ejected steadily for 8 years, the 1,200 kilogram satellite will reach a speed of over 36,000 km/hour 
(22,300 miles/hour). This is equal to 315 million kilometers/year or the distance to the sun and back 
from Earth! Here is some of the mathematics, in a highly simplified form, that will take you through the 
basic ideas behind these exciting rocket technologies! 
 
Problem 1 -  Charged particles gain speed in an electric field - The kinetic energy of a particle 
is given by K.E. = 1/2 mv2. The energy a charged particle gains from falling through a 
potential difference of V volts is given by E = qV. The NSTAR ion engine developed for the 
Deep Space 1 satellite uses  xenon atoms with a mass of  2.2 x 10-25 kg, and a charge of q = 
1.6 x 10-19 coulombs. What will be the speed of the atom, in kilometers/hour, if the voltage 
grid of the ion engine is 1,300 volts?    
 
Problem 2 -  The smaller the grid separation, the higher the acceleration  - The NSTAR 
engine has a grid separation of  0.7 mm. From your answer to Problem 1, A) what is the 
average acceleration of the ions as the leave the grid? B) What is the force they experience, 
in Newtons? 
 
Problem 3 - The thrust depends on particle flow rate - How many particles have to be ejected 
in the time it takes to cross the grid, to create a thrust of 0.90 Newtons? (Express the answer 
in particles per second). 
 
Problem 4 - Charged particle flows produce electrical currents - If each particle carries 
exactly one unit of charge, and 1 Ampere = 6.25 x 1018 particles/sec, what is the current 
needed in the beam to give the thrust in Problem 3? 
 
Problem 5 - Currents require power to maintain them - What is the beam power, in watts, 
defined by Power = Voltage x Amperage? 
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65 The Milky Way: A mere cloud in the cosmos 

 

 The photo on the left shows what the universe may have looked like a few 
million years after the Big Bang: A clumpy soup of dimly glowing matter. The image 
on the right shows how one of those clumps may have evolved into a recognizable 
galaxy today. In Big Bang cosmology, the universe expands, and space stretches. 
An important consequence of this is that the density of matter in space is also 
decreasing!   
 
 
Problem 1 -  The volume of the Milky Way can be approximated by a disk with a 
thickness of 1000 light years and a radius of 50,000 light years. Compute the volume 
of the Milky Way in cubic centimeters. (1 light year = 9.5 x 1017 centimeters.) 
 
Problem 2 - The mass of the Milky Way is approximately equal to 300 billion stars, 
each with the mass of the Sun: 2 x 1033 grams. Compute the total mass of the Milky 
Way. 
 
Problem 3 - If you were to take all of the stars and gas in the Milky Way and spread 
them out throughout the entire volume of the Milky Way, about what would be the 
density of the Milky Way in: A) grams/cm3  B) kilograms/m3

  
Problem 4 -  If the average density of the matter in the universe was at one time 
equal to that of the Milky Way (Problem 3),  by what factor would the volume of the 
universe have to increase in order for it to be 4.6 x 10-31 grams/cm3  today?  
 
Problem 5 - By what factor would the size of the universe have had to expand by 
today, and how far apart would the Milky Way and the Andromeda galaxy have been 
at that time if their current separation is 2.2 million light years? 
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66 Where Did All the Stars Go? 

 Have you ever looked closely at 
NASA photographs from space and 
wondered where the stars went?  
 To the left is an Apollo-11 photo 
taken by astronauts on the surface of the 
moon. Notice the sky has no stars! The re-
touched photo on the bottom-left gives an 
impression of the stars that a simple $100 
camera would see if it used a 'timed 
exposure' of about 20 seconds. So why did 
the very expensive camera used by the 
Apollo-11 astronauts show not a single star?  
 The re-touched photo below shows 
what might happen to the lunar surface 
detail with a 20-second exposure. 

 A camera light meter measures the brightness of an object. Let's indicate brightness by 
the unit 'cents/second'. For example, a faint object might have a brightness of 10 cents/second 
while a bright object has 10,000 cents/second. 
 
Problem 1 - If the stars in the Apollo photo have a brightness of 2.5 cents/sec, how many cents 
will be collected in a 20-second time-exposure? 
 
Problem 2 - If the lunar surface has a brightness of 500 cents/second, how many cents will be 
collected in a 20-second exposure? 
 
Problem 3 - If the lunar surface is scaled to a camera contrast setting of 100%, A) How bright, in 
cents, is a 1% contrast change? B) What contrast change do the stars represent? 
 
Problem 4 - If the image is set to only record contrast changes of 1% or greater to bring out 
detail on the lunar surface, will the stars be visible? Explain. 
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67 Star Circles 

 One of the first things that amateur astronomers do with a camera is to point it at 
the North Celestial Pole (near Polaris the North Star) and take a time-exposure lasting 
minutes or hours. The Earth's rotation causes the stars to form long semi-circular trails. 
 
Problem 1 - Which stars in the photo are nearest the NCP? 
 
Problem 2 - The width of the image is 36.0 degrees. What is the scale of the image in 
arcminutes/millimeter? 
 
Problem 3 - Using your method of choice, identify the location of the NCP as accurately as 
possible.  
 
Problem 4 - Which star do you think is Polaris in the photograph, and how far is it from 
your location for the NCP? 
 
Problem 5 - What features in the photograph are not stars or planets? Explain your 
reasoning. 
 
Problem 6 - From the information in the photograph, to the nearest minute of time, how 
long was the camera shutter left open to make this 'star trail' photograph? 
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68 Finding Mass in the Cosmos 

 One of the neatest things in astronomy is 
being able to figure out the mass of a distant object, 
without having to 'go there'. Astronomers do this by 
employing a very simple technique. It depends only 
on measuring the separation and period of a pair of 
bodies orbiting each other. In fact, Sir Issac Newton 
showed us how to do this over 300 years ago! 
 Imagine a massive body such as a star, and 
around it there is a small planet in orbit. We know 
that the force of gravity, Fg,  of the star will be pulling 
the planet inwards, but there will also be a 
centrifugal force, Fc, pushing the planet outwards.  

 
Primary Companion Period Orbit Radius Mass of Primary 

Earth Communications 
satellite 

24 hrs 42,300 km  

Earth Moon 27.3 days 385,000 km  

Jupiter Callisto 16.7 days 1.9 million km  

Pluto Charon 6.38 days 17,530 km  

Mars Phobos 7.6 hrs 9,400 km  

Sun Earth 365 days 149 million km  

Sun Neptune 163.7 yrs 4.5 million km  

Sirius A Sirius B 50.1 yrs 20 AU  

Polaris A Polaris B 30.5 yrs 290 million miles  

Milky Way Sun 225 million yrs 26,000 light years  

This is because the planet is traveling at a particular speed, V,  in its orbit. When 
the force of gravity and the centrifugal force on the planet are exactly equal so that 
Fg = Fc, the planet will travel in a circular path around the star with the star exactly 
at the center of the orbit.  
 
Problem 1) Use the three equations above to derive the mass of the primary body, 
M, given the period, T, and radius, R, of the companion's circular orbit.  
 
Problem 2) Use the formula M = 4 π2R3/ (G T2 ) where G = 6.6726 x 10-11N-m2/kg2 

 and M is the mass of the primary in kilograms, R is the orbit radius in meters and T 
is the orbit period in seconds, to find the masses of the primary bodies in the table 
below. (Note: Make sure all units are in meters and seconds first! 1 light years = 9.5 
trillion kilometers)  
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69 Star Magnitudes and Multiplying Decimals  
 The brightness of a star is indicated by 
the Apparent Magnitude scale, which leads to 
some interesting math! 
 
Rule 1: The larger the number, the fainter the 
star. For example, Procyon has a magnitude of 
+0.4 while Wolf-359 has a magnitude of +13.5, 
so Wolf-359 is fainter than Procyon. 
 
Rule 2: Each difference, by one whole 
magnitude, represents a brightness change of 
2.51 times. For example, the star Tau Ceti has a 
magnitude of +3 while Fomalhaut has a 
magnitude of +1. The brightness difference 
between them is +3 - (+1) = 2 magnitudes or a 
factor of 2.51 x 2.51 = 6.3 times.  
 

Problem 1 - UV Ceti has a magnitude of +13.0 while Wolf-294 has a magnitude of +10.0. 
Which star is fainter, and by what factor? 
 
Problem 2 - Sirius has a magnitude of -1 and Mintaka has a magnitude of +2, which star is 
faintest. What is the magnitude difference, and by what factor do they differ? 
 
Problem 3 - Betelgeuse has a magnitude of +1 and 70 Ophiuchi has a magnitude of +6. 
What is the magnitude difference and by what factor do they differ? 
 
Problem 4 - Capella has a magnitude of +0 and Barnard's Star has a magnitude of +9. What 
is the magnitude difference, and by what factor do they differ? 
 
Problem 5 - Sort the stars in the table so that the brightest star appears first, and the faintest 
star appears last. 

Star Apparent Magnitude 
Ross-47 +11.6 
Antares +1.0 

Alpha Centauri -0.1 
36 Ophichi +5.1 
Beta Hydra +2.7 

Rigel +0.1 
Eta Cassiopeia +3.5 

Sirius -1.5 
Wolf-359 +13.5 
Kruger-60 +9.9 
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70 Galaxy Distances and Mixed Fractions 
 Our Milky Way 
galaxy is not alone in 
the universe, but has 
many neighbors.  
 
The distances between 
galaxies in the universe 
are so large that 
astronomers use the 
unit 'megaparsec' (mpc) 
to describe distances.  
 
One mpc is about 3 1/4 
million light years. 
 
Hubble picture of a Ring Galaxy 
(AM 0644 741) at a distance of 
92 mpc. 
 

Problem 1 - The Andromeda Galaxy is 3/4 mpc from the Milky Way, while the Sombrero 
Galaxy is 12 mpc from the Milky Way. How much further is the Sombrero Galaxy from 
the Milky Way? 
 
Problem 2 -The Pinwheel Galaxy is 3 4/5 mpc from the Milky Way. How far is it from the 
Sombrero Galaxy? 
 
Problem 3 - The Virgo Galaxy Cluster is 19 mpc from the Milky Way. About how far is it 
from the Pinwheel Galaxy? 
 
Problem 4 - The galaxy Messier 81 is located 3 1/5 mpc from the Milky Way. How far is it 
from the Andromeda Galaxy? 
 
Problem 5 - The galaxy Centaurus-A is  4 2/5 mpc from the Milky Way. How far is it from 
the Andromeda Galaxy? 
 
Problem 6 - The galaxy Messier 63 is located about 4 1/5 mpc from the Milky Way. How 
far is it from the Pinwheel galaxy? 
 
Problem 7 - The galaxy NGC-55 is located 2 1/3 mpc from the Milky Way. How far is it 
from the Andromeda galaxy? 
 
Problem 8 - In the previous problems, which galaxy is 2 1/15 mpc further from the Milky 
Way than NGC-55? 
 
Extra for Experts: How far, in light years, is the Virgo Galaxy Cluster from the Milky 
Way? 
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71 Atomic Numbers and Multiplying Fractions 

 The Atomic 
Number, Z, of an element 
is the number of protons 
within the nucleus of the 
element's atom. This 
leads to some interesting 
arithmetic! 
 
 A portion of the 
Periodic Table of the 
elements is shown to the 
left with the symbols and 
atomic numbers for each 
element indicated in each 
square. 
 

Problem 1 - Which element has an atomic number that is 5 1/3 larger than carbon (C)? 
 
 
 
Problem 2 - Which element has an atomic number that is 5 2/5 that of neon (Ne)?  
 
 
 
Problem 3 - Which element has an atomic number that is 8/9 that of  krypton (Kr)?  
 
 
 
Problem 4 - Which element has an atomic number that is 2/5 of astatine (At)?   
 
 
 
Problem 5 - Which element has an atomic number that is  5 1/8 that of sulfur (S)?  
 
 
 
Problem 6 - Which element has an atomic number that is  3 2/3 that of fluorine (F)?  
 
 
 
Problem 7 - Which element in the table has an atomic number that is both an even 
multiple of  the atomic number of carbon, an even multiple of the element magnesium 
(Mg) which has an atomic number of 12, and has an atomic number less than iodine (I)? 
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72 Nuclear Arithmetic 

 Over 100 elements have been 
discovered over the last century. The 
nucleus of each atom contains two 
kinds of particles: protons and 
neutrons.  
 Scientists classify each 
element by the number of protons (Z) 
and the mass of the element (A).  
 
 Z is called the Atomic Number 
 A is called the Atomic Mass 
 
The number of neutrons (N) in the 
nucleus is given by the formula: 
 

        N = A - Z 

Problem 1 - In the above example for the element carbon, there are two different 
forms for carbon. A) How many protons are in the nucleus of carbon-12 and carbon-
14? B) How many neutrons are in each nucleus?  
 
 
 
Problem 2 - The element praesodymium has an atomic number of 59 and an atomic 
mass of 141. How many nuclear neutrons does it contain?  
 
 
 
 
Problem 3 - The element nickel (Z=28, A=58) has 30 isotopes that have the same 
atomic number, but whose atomic masses range from A=48 to A=78.  A) How many 
neutrons does the lightest isotope of nickel have? B) How many neutrons does the 
heaviest isotope have?   
 
 
 
Problem 4 - Solve the formula N = A - Z to determine the missing information: 
A) Tin:            A= 125     and   Z=50      what is   N?      
B) Niobium:     N = 54      and   Z= 41     what is A?     
C) Nobelium:    A = 253  and  N = 151  what is Z?  
D) Francium:     A=232  and  Z= 87    what is N? 
E) Oxygen:     Z =  8    and  N=  16    what is A?   
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73 Working with Rates 

 Because things change in the 
universe, astronomers often have to 
work with mathematical quantities that 
describe complex rates. 
 
Definition: A rate is the ratio of two 
quantities with different units. 
 
In the problems below, convert the 
indicated quantities into a rate. 
 
Example:  15 solar storms in 2 weeks  
becomes the rate:   
 
         15 solar storms          15 
R =    --------------------   =    ----     
                2 weeks               2 
 
 R =    7 solar storms/week. 
         or 7 solar storms per week. 

Image of craters on Mercury taken by the 
MESSENGER spacecraft.  

Problem 1 -  15 meteor impacts in 3 months. 
Problem 2 -   2,555 days in 7 years 
Problem 3 -  1,000 atomic collisions in 10 seconds 
Problem 4 -  36 galaxies in 2 two clusters 
Problem 5 -  1600  novas in 800 years 
Problem 6 -  416 gamma-ray bursts spotted in  52 weeks  
Problem 7 -  3000 kilometers traveled in 200 hours. 
Problem 8 -  320 planets orbiting 160 stars. 
Problem 9 -  30 Joules of energy consumed in 2 seconds 
 
Compound Units: 
 
Problem 10 - 240 craters covering 8 square miles of area 
Problem 11 - 16,000 watts of energy collected over 16 square meters. 
Problem 12 -  380 kilograms in a volume of 20 cubic meters 
Problem 13 -  6 million years for 30 magnetic reversals 
Problem 14 -  1,820 Joules over 20 square meters of area 
Problem 15 - A speed change of  50 kilometers/sec in 10 seconds. 
 
Scientific Notation: 
 
Problem 16 -   3 x 1013 kilometers traveled in 3 x 107 seconds. 
Problem 17 -   70,000 tons of gas accumulated over 20 million square kilometers 
Problem 18 -  360,000 Newtons of force over an area of  1.2 x 106 square meters 
Problem 19 -  1.5 x 108 kilometers traveled in 50 hours 
Problem 20 -  4.5 x 105 stars in a cluster with a volume of 1.5 x 103 cubic lightyears 
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74 Rates and Slopes: An Astronomical Perspective 

 A 'rate' is defined as the ratio of 
two quantities which have different units 
of measurement.  
 For example, if you travel in a car 
200 kilometers in 2 hours, the rate is  R = 
200 kilometers/2 hours  or R = 100 
kilometers/hour. You recognize this 
particular rate as just the speed of the 
car!  Scientists work with other kinds of 
rates as well.  
 Graphically, a rate is a measure 
of the difference between two values 
along the Y-axis, divided by the 
difference between two corresponding 
values along the X-axis. It also 
represents the slope of a curve plotted 
on a graph. 
 For example, let's look at the top 
graph to the left. It shows how the 
amount of carbon dioxide in the 
atmosphere is increasing between 1955 
and 2005. The two points along the data 
curve can be used to find the rate of 
change of the carbon dioxide in time, 
which is the slope of the line connecting 
these two points.  
 The change along the X-axis is 
just the difference  '1995-1965' or +30 
years. The difference along the Y-axis 
corresponding to these same years is 
just '360 ppm -320 ppm' or +40 ppm. The 
rate is then R = +40 ppm/+30 years or 
+1.3 ppm/year.  
 
 Note that we have kept careful 
track of the signs and units in the 
calculations. This is because rates can 
represent both increases (positive) or 
decreases (negative) changes.  
 
Problem 1 - Calculate the Rate 
corresponding to the speed of the 
galaxies in the Hubble Diagram. (Called 
the Hubble Constant, it is a measure of 
how fast the universe is expanding). 
 
Problem 2 - Calculate the rate of 
sunspot number change between the 
indicated years. 
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75 Areas Under Curves: An Astronomical Perspective 
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 The 'area under a curve' is an important mathematical quantity that defines 
virtually all mathematical functions. It has many practical uses as well. For example, the 
function plotted above, call it P(X), determines the number of new planets, P, that were 
discovered each year, X,  between 1994 through 2007. It was created by tallying-up the 
number of actual planet discoveries reported in research articles during each of the 
years.  The actual curve representing the function P(X) is shown as a black line, and the 
columns indicate the number of discoveries per year. 
 
Problem 1 - How would you calculate the total number of planets detected between 
1994-2007? 
 
Problem 2 - What is the total area under the curve shown in the figure? 
 
Problem 3 - Suppose N(1995,2000) represents the number of planets detected during 
the years 1995, 1996, 1997, 1998, 1999, 2000. A) What does N(1994,2007) mean? B) 
What does  N(1994,2007)  - N(1994,2000) mean? 
 
Problem 4 -  Evaluate:   
  A)  N(2002,2007) 
  B)  N(1999,2002) 
 
Problem 5 - Evaluate and re-write in terms of N   (Example for a function defined for X = 
A,B,C and D : N(A,B) + N(C,D)  is just  N(A,D) )   
  A)  N(1994,2001) + N(2002,2007) 
  B)  N(2001,2005) - N(2002,2005) 
  C)  N(1994,2007) - N(1994,2001) 
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76 Perimeters: Which constellation is the longest? 

Star Segment Length 
AB 5 1/2 
BC 8 
CD 4 1/2 
DE 5 1/3 
EF 4 1/3 
FG 6 2/3 
 

  
 
 

 Constellations form various kinds of 
irregular geometric figures, but we can study them 
by examining some of their basic properties. One 
of these is their perimeter. 
 Here are two well-known constellations, 
Ursa Major, this portion is also known as the Big 
Dipper in English-speaking countries, and Orion 
'The Hunter'. On star charts they look like they are 
about the same size, but let's put this to a test. 
From Earth, we measure the distance between 
stars as they appear in the sky in terms of 
degrees. Let’s measure the separations between 
the stars in degrees and calculate their 
perimeters. 
 
Problem 1 -  From the corresponding table above, 
calculate the total perimeter of Ursa Major by 
adding up the lengths of the star segments from 
AB to FG which are given in degrees. 
 
Problem 2 - From the corresponding table to the 
left, calculate the total perimeter of Orion by 
adding up the lengths of the star segments from 
AB to GA which are given in degrees. 
 
Problem 3 - Which constellation has the longest 
perimeter in degrees? 
 
Problem 4 - What is the average distance in 
degrees between the stars along the perimeter of 
A) Ursa Major?  B) Orion? 
 
Problem 5 - In which constellation are the stars 
the farthest apart on average? 
 
Problem 6 - Can you name another property of a 
constellation that could be interesting to study? 
 

Star Segment Length 
AB 10 
BC 7 
CD 8 1/4 
DE 8 
EF 6 
FG 4 1/4 
GA 5 1/2 
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77 Volcanos are a Blast- Working with simple equations 

 There are three equations 
that describe projectile motion on a 
planet: 
 
Equation 1: Maximum velocity, V, 
needed  to reach a height, H: 
 
 
Equation 2: Maximum horizontal 
distance, X: 
 
 
Equation 3: Time, T,  required to 
reach maximum horizontal distance: 
 
 In all three equations, g is a 
constant and is the acceleration of 
gravity at the surface of the planet, 
and all units are in meters or 
seconds. 

Problem 1 - The volcano, Krakatoa, exploded on August 26, 1883 and obliterated an entire 
island. The detonation was heard over 2000 kilometers away in Australia, and was the 
loudest sound created by Nature in recorded human history! If the plume of gas and rock 
reached an altitude of H=17 miles (26 kilometers) what was the speed of the gas, V, that was 
ejected, in A) kilometers/hour? B) miles/hour? C) What was farthest horizontal distance, X, in 
kilometers that the ejecta reached? D) How long, T, did it take for the ejecta to travel the 
maximum horizontal distance? E) About 30,000 people were killed in the explosion. Why do 
you think there were there so many casualties?  (Note: g = 9.8 meters/sec2 for Earth.) 
 
 
Problem 2 - An asteroid collides with the lunar surface and ejects lunar material at a speed 
of V=3,200 kilometers/hr. A) How high up, H, does it travel before falling back to the surface? 
B) The escape speed from the lunar surface is 8,500 km/hr. From your answer to Problem 1, 
would a 'Krakatoa' explosion on the moon's surface have been able to launch lunar rock into 
orbit? (Note: g = 1.6 meters/sec2 for the Moon.) 
 
 
Problem 3 - Plumes of gas are ejected by geysers on the surface of the satellite of Saturn 
called  Enceladus.  If g =  0.1 meters/sec2 , and H =   750 km, what is the speed of the gas, 
V, in the ejection in kilometers/hr? 
 
 
Inquiry Problem: Program an Excel Spreadsheet to calculate the various quantities in the 
three equations given input data about the planet and ejecta. How does the maximum 
ejection velocity and height change with the value of g used for a variety of bodies in the 
solar system? 
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78 Kelvin Temperatures and Very Cold Things! 

 To keep track of some of the coldest 
things in the universe, scientists use the 
Kelvin temperature scale which begins at 0o 
Kelvin, which is also called Absolute Zero. 
Nothing can ever be colder than Absolute 
Zero because at this temperature, all motion 
stops. The table to the left shows some 
typical temperatures of different systems in 
the universe. 
 
 You are probably already familiar 
with the Centigrade (C) and Fahrenheit  (F) 
temperature scales. The two formulas below 
show how to switch from degrees-C to 
degrees-F. 
         5                                      9 
 C = --- ( F - 32 )               F =  ---  C   +  32 
         9                                      5 
 
Because the Kelvin scale is related to the 
Centigrade scale, we can also convert from 
Centigrade to Kelvin (K) using  the equation: 
 
                      K  =  273 + C 
 
Use these three equations to convert 
between the three temperature scales: 
 
Problem 1:      212 F    converted to  K 
 
Problem 2:          0 K    converted to  F 
 
Problem 3: 100 C    converted to  K 
 
Problem 4: -150 F   converted to  K 
  
Problem 5: -150 C   converted to  K 
 
Problem 6:  Two scientists measure the 
daytime temperature of the moon using two 
different instruments. The first instrument 
gives a reading of  + 107 C while the second 
instrument gives  + 221 F. A) What are the 
equivalent temperatures on the Kelvin scale; 
B) What is the average daytime temperature 
on the Kelvin scale?  
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79 Pulsars and Simple Equations 

 A pulsar is a rapidly 
spinning star. It's about the 
same size as Earth, but it 
contains as much mass as an 
entire normal star like the sun. 
 
 When they are formed, 
they spin at an unimaginable 
pace: nearly 30 times every 
second. As they grow older, 
they slow down. 
 
 Astronomers have 
measured the spinning of two 
pulsars: The Crab Nebula 
pulsar, and AP 2016+28.  
They used this data to create 
two simple equations that 
predict the pulsar's spin rates 
in the future.  

The Crab Nebula is all that remains of a supernova 
explosion 900 years ago. At the center of this 
picture, taken by the Hubble Space Telescope, is a 
rapidly spinning pulsar which flashes 30 times a 
second as it spins. 

Crab Nebula Pulsar:      P = 0.033 + 0.000013 T 
 

AP 2016+28 Pulsar:       P =  0.558 + 0.0000000047 T 
 
P is the time, in seconds, it takes the pulsar to spin once-around on its axis. T is the 
number of years since today. 
 
Problem 1:  Evaluate each equation for P for a time that is 10,000 years in the 
future. How fast are the two pulsars spinning at that time? 
 
Problem 2:  How long will it take the Crab Pulsar to slow to a period exactly twice its 
current period of 0.033 seconds? 
 
Problem 3:   How long will it take Pulsar AP 2016+28 to slow to a period of 1.116 
seconds (exactly twice its current period of 0.558 seconds)? 
 
Problem 4: How many years ago was the pulsar AP 2016+28 spinning at the same 
rate as the Crab Pulsar? 
 
Problem 5:   How long will it take each pulsar to slow to a period of exactly 2.0 
seconds? 
 
Problem 6:   In how many years from now will the two pulsars be spinning at exactly 
the same rates? 
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80 The Many Faces of Energy 

 Energy comes in many 
forms, and each one can be 
measured in terms of its own 
convenient units. For example, if 
you were interested in creating a 
balanced diet, you would 
measure food energy by its 
calorie content, not by its number 
of Joules! 
 The table to the left shows 
a few of the equivalent units that 
scientists use to keep track of 
energy in different kinds of 
systems. 

1 Joule = 10 million ergs 

1 electron Volt  (eV) = 1.6 x 10
-19

 Joules 

1 degree (K) = 8.62 x 10
-5

 eV 
1 calorie = 4.2 Joules 

1 kiloWatt hour = 3.6 x 10
6
 Joules 

1 eV = 1.78 x 10
-33

 grams 
1 AMU = 931.5 million eV  (MeV) 

Problem 1 - In a chemical reaction, an energy of about  2.5 eV is required to 
activate the reaction to create a new compound. To form a single molecule of the 
compound: A)  How many Joules of energy is this?    B) How many calories is 
this? 
 
 
 
Problem 2:  A star has a surface temperature of  20,000 K. About what is the 
average energy per atom in electron Volts?  
 
 
 
Problem 3:  The mass of an electron is  9.11 x 10-28 grams. What is its 
equivalent mass in kiloelectron Volts (keV)?   
 
 
 
 
Problem 4:  A proton and a neutron are combined to form a deuterium nucleus. 
Their total individual masses equal 2.016490 AMU, but the mass of a deuterium 
nucleus is only    2.014102 AMU. If the mass difference  to form the deuterium is 
0.002388 AMU, how much energy does this energy difference represent in:  A) 
million electron volts (MeV)? B) grams? (Note: this is called the binding energy of 
the nucleus.) 
 
 
 
Problem 5:  An astronomer detects X-ray light from a pulsar with an energy of 15 
keV. About what is the temperature of the gas emitting this light?  
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81 Variables and Expressions from Around the Cosmos 

 There are many simple mathematical formulae that astronomers use to 
describe different aspects of the universe and the physical world. (The above photo  of 
Saturn  was taken by NASA's Cassini spacecraft from behind Saturn looking back 
towards the Sun.) 
 
 
Problem 1:  Find, P, the length of Earth's day 500 million years in the future if P = 24 
hours + 0.004 Y, where Y is the number of millions of years that have elapsed. 
 
Problem 2:  Find the distance to the Andromeda galaxy in light years, L, if its distance 
in parsecs, P = 770,000 and L = 3.26 P. 
 
Problem 3:   Find the temperature, T, of a gas cloud emitting X-rays if the energy of the 
X-rays is E = 12,000 electron Volts and T = 11,500 E. 
 
Problem 4: Find the temperature in degrees Centigrade of the air at an altitude of 20 
kilometers if H = 20 and T = 25.0 - 6.5 H. 
 
Problem 5: Find the diameter in kilometers, D, of a black hole with a mass of 10 times 
the sun if D = 5.6 M and M = 10.0. 
 
Problem 6: Calculate the speed of sound,  S, in meters/second for a temperature of T 
= 200 Centigrade (that's 392 F), if S = 331 + 0.6 T. 
 
Problem 7: Calculate the sunspot number, N, if there are X = 15 individual sunspots 
and Y = 10 groups of sunspots is N = X + 11 Y. 
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82 Craters are a Blast! 

  
 Have you ever wondered how 
much energy it takes to create a 
crater on the Moon. Physicists have 
worked on this problem for many 
years using simulations, and even 
measuring craters created during 
early hydrogen bomb tests in the 
1950's and 1960's.  One approximate 
result is a formula that looks like this: 
 

   E = 4.0 x 1015 D3 Joules. 
 
where D is the crater diameter in 
kilometers. 
 As a reference point, nuclear 
bomb with a yield of one-megaton of 
TNT produces  4.0 x 10

15
 Joules of 

energy! 

Problem 1 - To make the formula more 'real', convert the units of Joules into an equivalent 
number of one-megaton nuclear bombs. 
 
 
Problem 2 - The photograph above was taken in 1965 by NASA's Ranger 9 spacecraft of 
the large crater Alphonsis. The width of the image above is 183 kilometers. With a millimeter 
ruler, determine the diameters, in kilometers, of a range of craters in the picture. 
 
 
Problem 3 - Use the formula from Problem 1 to determine the energy needed to create the 
craters you identified. 
 
 
Note: To get a better sense of scale, the table below gives some equivalent energies for 
famous historical events: 

Event Equivalent Energy (TNT) 
  

Cretaceous Impactor 100,000,000,000 megatons 
Valdiva Volcano, Chile 1960 178,000 megatons 

San Francisco Earthquake 1909 600 megatons 
Hurricane Katrina 2005 300 megatons 
Krakatoa Volcano 1883 200 megatons 

Tsunami 2004 100 megatons 
Mount St. Helens Volcano 1980 25 megatons 
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83 Fractions and Chemistry 

 Because molecules and 
atoms come in 'integer' 
packages, the ratios of various 
molecules or atoms in a 
compound are often expressible 
in simple fractions.  
 
 Adding compounds 
together can often lead to 
interesting mixtures in which the 
proportions of the various 
molecules involve mixed 
numbers. 

 In the problems below, do not use a calculator and state all answers as simple 
fractions or integers. 
 
 
 
Problem 1 - What makes your car go: When 2 molecules of gasoline (ethane) are combined 
with 7 molecules of oxygen you get 4 molecules of carbon dioxide and 6 molecules of water. 
 
A) What is the ratio of ethane molecules to water molecules? 
B) What is the ratio of  oxygen molecules to carbon dioxide molecules? 
C) If you wanted to 'burn' 50 molecules of ethane, how many molecules of water result? 
D) If you wanted to create 50 molecules of carbon dioxide, how many ethane molecules 
would you have to burn? 
 
 
Problem 2 - How plants create glucose from air and water:  Six molecules of carbon dioxide 
combine with 6 molecules of water to create one molecule of glucose and 6 molecules of 
oxygen. 
 
A)  What is the ratio of glucose molecules to water molecules? 
B)  What is the ratio of oxygen molecules to both carbon dioxide and water molecules? 
C) If you wanted to create 120 glucose molecules, how many water molecules are needed? 
D) If you had 100 molecules of  carbon dioxide, what is the largest number of glucose 
molecules you could produce? 
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84 Atomic Fractions 

 The single electron inside a hydrogen atom can exist in 
many different energy states. The lowest energy an electron 
can have is called the Ground State: this is the bottom rung on 
the ladder marked with an energy of '1'. 
 The electron must obey the Ladder Rule. This rule says 
that the electron can gain or lose only the exact amount of 
energy defined by the various ladder intervals.  
 For example, if it is located on the third rung of the 
ladder marked with an energy of '1/9', and it loses enough 
energy to reach the Ground State, it has to lose exactly 1 - 1/9 
= 8/9 units of energy. 
 The energy that the electron loses is exactly equal to 
the energy of the light that it emits. This causes the spectrum of 
the atom to have a very interesting 'bar code' pattern when it is 
sorted by wavelength like a rainbow. The 'red line' is at a 
wavelength of 656 nanometers and is caused by an electron 
jumping from Energy Level 3 to Energy Level 2 on the ladder. 
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 To answer these questions, use the Energy Fractions  in the above ladder, and write 
your answer as the simplest fraction. Do not use a calculator or work with decimals because 
these answers will be less-exact than leaving them in fraction form! 
 
Problem 1 - To make the red line in the spectrum, how much energy did the electron have to 
lose on the energy ladder? 
 
Problem 2 - How much energy will the electron have to gain (+) or lose (-) in making the 
jumps between the indicated rungs:  
A) Level-2 to Level-5 
B) Level-3 to Level-1 
C) Level-6 to Level-4 
D) Level-4 to Level-6 
E) Level-2 to Level-4 
F) Level-5 to Level-1 
G) Level-6 to Level-5 
 
Problem 3 - From the energy of the rungs in the hydrogen ladder, use the pattern of the 
energy levels (1, 1/4, 1/9, 1/16, 1/25, …) to predict the energy of the electron jumping from 
A) the 10th rung to the 7th rung; B) the rung M to the lower rung N. 
 
Problem 4 - If an energy difference of '1' on the ladder equals an energy of 14 electron-
Volts, in simplest fractional form, how many electron-Volts does the electron lose in jumping 
from Level-6 to Level-4? 



85 More Atomic Fractions   

 The single electron inside an atom can exist in many 
different energy states. The lowest energy an electron can have is 
called the Ground State: this is the bottom rung on the ladder 
marked with an energy of '1' in the figure to the left. 
 
 The electron must obey the Ladder Rule. This rule says 
that the electron can gain or lose only the exact amount of energy 
defined by the various ladder intervals.  
 
 For example, if the electron jumps from the fourth rung of 
the energy ladder marked with an energy of '9/16', to the Ground 
State, the energy change is E = 9/16 - 1 = -7/16 units of energy. 
This difference is negative, which means that the electron has 
LOST 7/16 energy units. 
  
 In the problems below, leave all answers in the simplest 
fractions. 
 
Problem 1 - The electron gets a boost of energy and jumps from 
level 3 to Level 6. How much energy did it gain? 
 
Problem 2 - An electron falls from Level 6 to Level 2. How much 
energy did it lose? 
 
Problem 3 - An electron changes from Level 7 to Level 3. How 
much energy did it gain or lose? 
 
Problem 4 - An electron is excited from Level 2 to Level 7. How 
much energy was gained? 
 
Problem 5 - The atom collides with another atom and the electron 
jumps from Level 3 to Level 6. How much energy did the other 
atom lose in the collision? 
 
Problem 6 - An electron jumps from Level 3 to Level 2 and give of 
a particle of light. What energy is carried off by the light? 
 
Problem 7 - An electron jumps from Level 7 to Level 4, then from 
Level 4 to Level 2. How much energy was lost with each jump, and 
what was the total energy lost after the two jumps? 
 
Problem 8 - An electron jumps from the Ground State to Level 5, 
then is deexcited to Level 3, and after a while it is excited to Level 
6, and then loses energy in a jump to Level 2. What is the total 
energy change of the electron between the start and end of this 
process? 
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86 Atomic Fractions - III 

 

 The electron inside an atom exists in 
one of many possible energy levels. These 
levels are like the rungs of a ladder. When it 
jumps from one level (rung) to the next, it 
gains or loses a specific amount of energy.  
 
 For example, if the energy of one 
rung is 3/4 and the energy of the next level 
is 1/4, the electron will lose 3/4 - 1/4 = 1/2 a 
unit if it jumps from the higher to the lower 
energy level. 
 
Problem 1 - Suppose the energy level 
ladder of an imaginary element looked like 
the one to the left. What are all of the 
possible energies that an electron could lose 
as it jumped from a higher level to a lower 
one based on this ladder? (Leave your 
answers as simple fractions) 
 
Problem 2 - On a number line, order the list 
of possible energy differences you tabulated 
in Problem 1,  from lowest (left) to highest 
(right). For example, the energy difference 
between Level 2 and Level 1 is   1 - 3/4 = 
1/4, so draw a single vertical line at the 
location '1/4' on the number line. If a second 
energy difference is found to have the same 
value of '1/4' , draw the vertical line twice as 
tall, and so on. The graph is called a 
histogram. 

 When you are finished with Problem 1 and 2, your number line will represent all of 
the possible ways that that atom can emit light. Every atom has its own pattern of atomic 
'lines' which are based on each atom's unique energy ladder. This pattern is called a 
spectrum, and it is the unique fingerprint that allows scientists to identify each atom. Here 
is an example of an actual atomic spectrum for the element helium. 
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87 Kepler – The Hunt for Earth-like Planets 

 On March 11, 2009, 
NASA launched the Kepler 
satellite. Its 3-year mission is to 
search 100,000 stars in the 
constellation Cygnus and detect 
earth-sized planets.  How can the 
satellite do this? 
 
 The image to the left 
shows what happens when a 
planet passes across the face of 
a distant star as viewed from 
Earth. In this case, this was the 
planet Mercury on February 25, 
2007.  

The picture was taken by the STEREO satellite. Notice that Mercury’s black disk 
has reduced the area of the sun. This means that, on Earth, the light from the sun 
dimmed slightly during the Transit of Mercury. Because Mercury was closer to Earth than 
the Sun, Mercury’s disk appears very large. If we replace Mercury with the Moon, the 
lunar disk would exactly cover the disk of the Sun and we would have a total solar 
eclipse. 

Now imagine that the Sun was so far away that you couldn’t see its disk at all. 
The light from the Sun would STILL be dimmed slightly. The Kepler satellite will carefully 
measure the brightness of more than 100,000 stars to detect the slight changes caused 
by ‘transiting exoplanets’. 

 
Problem 1 – With a compass, draw a circle 160-millimeters in radius to represent the 
sun. If the radius of the sun is 696,000 kilometers, what is the scale of your sun disk in 
kilometers/millimeter?    
 
Problem 2 – At the scale of your drawing, what would be the radius of Earth ( R = 6,378 
km) and Jupiter (R = 71,500 km)?   
 
Problem 3 – What is the area of the Sun disk in square millimeters?  
 
Problem 4 – What is the area of Earth and Jupiter in square millimeters?  
 
Problem 5 – By what percent would the area of the Sun be reduced if:  A)  Earth’s disk 
were placed in front of the Sun disk? B)  Jupiter’s disk were placed in front of the Sun 
disk?  
 
Problem 6 – For the transit of a large planet like Jupiter, draw a graph of the percentage 
brightness of the star (vertical axis) as it changes with time (horizontal axis) during the 
transit event. Assume that the entire transit takes about 1 day from start to finish. 
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Useful Internet Resources 
 
 
Space Math @  NASA 
 
                         http://spacemath.gsfc.nasa.gov 
 
 
Practical Uses of Math and Science (PUMAS) 
        
             http://pumas.gsfc.nasa.gov 
 
 
Teach Space Science 
         http://www.teachspacescience.org 
 
 
 
Space Weather Action Center 
          http://sunearthday.nasa.gov/swac 
 
 
 
THEMIS Classroom guides on Magnetism 
     
         http://ds9.ssl.berkeley.edu/themis/classroom.html 
 
 
 
The Stanford Solar Center 
           http://solar-center.stanford.edu/solar-math/ 
 
 
 
A Math Refresher 
        http://istp.gsfc.nasa.gov/stargaze/Smath.htm 



 A note from the Author: 
 
Hi again! 
 
 Here is another collection of 'fun' problems based on NASA space missions across the 
solar system and the universe. This year, I added many more advanced math and calculus 
problems just to round-out the math offerings. 
 
 This is a complicated time for space exploration. The Shuttle Fleet will be retired by 
the end of 2010. For the first time in 50 years, US access to space by using home-grown 
rockets will be over. The cancellation of the Constellation program will leave 3-5 year gap in 
our ability to bring our own astronauts into space unless commercial rocket shuttles can be 
deployed quickly to provide this service. This also means that our access to the Space 
Station that we just built at a cost of nearly $100 billion is now by way of the Russian 
launchers.  
 Meanwhile, NASA has launched the Solar Dynamics Observatory to study the sun in 
‘high-definition’ and the current count of known extra-solar planets now stands at 430. 
Astronomers have begun to study the atmospheres of many of these planets, and it is hoped 
that in the next 10 years we will discover the first earth-like world in terms of both its mass 
and ability to sustain liquid water on its surface. These are indeed exciting, and transitional, 
times in our exploration of space!! 
 
 By the way, here are three interesting quotes you may enjoy! 
 
"We shall never be able to study, by any method, their (stars) chemical composition or 
their mineralogical structure" (Philospher Auguste Comte, in 'Cours de Philosophie 
Positive', 1830-1842) - Within 10 years after publication, the spectroscope was invented and 
used to study the elements in the sun, and later the stars. 
 
"Math is like childhood diseases: the earlier you have them, the better" (Physicist 
Arnold Sommerfeld) - Sommerfeld was one of the developers of a mathematical model for 
the atom, which predated the modern developments in quantum mechanics.  
 
"It turned out to be a great advantage to have overindulged in mathematics at an early 
age" (Nobel Laureate, Dudley Herschenbach). He won the 1987 Nobel Prize in Chemistry, 
along with John Polanyi and Yuan T. Lee  for his work on 'Reaction Dynamics'. 
 
Let me know if you have any other favorites quotes about the use of mathematics! 
 
 
 
 
  
 
 
         Sincerely, 
         Dr. Sten Odenwald 
          NASA Astronomer 
         Sten.odenwald@nasa.gov 
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