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This collection of activities is based on a weekly series of space science problems distributed to 
thousands of teachers during the 2004 through 2008 school years. They were intended as 
supplementary problems for students looking for additional challenges in the math and physical 
science curriculum in grades 10 through 12. The problems are designed to be “one-pagers,” 
consisting of a Student Page and Teacher’s Answer Key. This compact form was deemed very 
popular by participating teachers.  

The topic for this collection is Black Holes, which is a very popular and mysterious subject 
among students hearing about astronomy. Students have endless questions about these exciting 
and exotic objects as many of you may realize! Amazingly enough, many aspects of black holes 
can be understood by using simple algebra and pre-algebra mathematical skills. This booklet fills 
the gap by presenting black hole concepts in their simplest mathematical form.  

General Approach 
The activities are organized according to progressive difficulty in mathematics. Students need to 
be familiar with scientific notation, and it is assumed that they can perform simple algebraic 
computations involving exponentiation and square roots, and have some facility with calculators. 
The assumed level is that of Grade 10–12 Algebra II, although some problems can be worked by 
Algebra I students. Some of the issues of energy, force, space and time may be appropriate for 
students taking high school physics.  

This booklet was created by the NASA Space Math program  

Dr. Sten Odenwald (NASA - Hinode)  

For more weekly classroom activities about astronomy and space science, visit 
http://spacemath.gsfc.nasa.gov  

Add your email address to our mailing list by contacting Dr. Sten Odenwald at 
sten.f.odenwald@nasa.gov  

Cover credits: Black hole magnetic field (XMM/Newton); Accretion disk (April Hobart, 
NASA/Chandra) Accretion disk (A. Simonnet, Sonoma State University, NASA 
Education and Public Outreach); Galactic Center x-ray (NASA/Chandra)  

Inside Credits: 3) Black hole magnetic field XMM/Newton); 4) tidal disruption 
(XMM/Newton); 5) Milky Way center (NASA/Chandra) Infrared (ESA/NAOS); 6) Accretion 
disk (M. Weiss, NASA/Chandra); 7) accretion disk (April Hobart NASA/Chandra); 8) 
Accretion disk (M. Weiss NASA/Chandra); 10) accretion disk (M. Weiss NASA/Chandra); 
11) x-ray emission (Ann Field, STScI);  

http://spacemath.gsfc.nasa.gov/


Teachers continue to look for ways to make math meaningful by providing students with problems 
and examples demonstrating its applications in everyday life. Space mathematics offers math 
applications through one of the strongest motivators—space. Technology makes it possible for 
students to experience the value of math, instead of just reading about it. Technology is essential 
to mathematics and science for such purposes as “access to outer space and other remote 
locations, sample collection and treatment, measurement, data collection and storage, 
computation, and communication of information.” The National Council of Teachers of 
Mathematics (NCTM) standards include the statement that “Similarity also can be related to such 
real-world contexts as photographs, models, projections of pictures,” which can be an excellent 
application for black hole data.  

Black Hole Math is designed to be used as a supplement for teaching mathematical topics. The 
problems can be used to enhance understanding of the mathematical concept or as a good 
assessment of student mastery.  

An integrated classroom technique provides a challenge in math and science classrooms, 
through a more intricate method for using Black Hole Math. Read the scenario that follows:  

Ms. Green decided to pose a Mystery Math Activity for her students. She challenged each 
student with math problem from the Black Hole Space Math book. She wrote the problems on the 
board for students to solve upon entering the classroom; she omitted the words “black hole” from 
each problem. Students had to solve the problem correctly in order to make a guess to solve the 
mystery. If the student got the correct answer, they received a free math homework pass for that 
night. Since the problems are a good math review prior to the end of the year final exam, all 
students had to do all of the problems, even if they guessed the correct answer.  

Black Hole Math can be used as a classroom challenge activity, assessment tool, enrichment 
activity, or in a more dynamic method as is explained in the above scenario. It is completely up to 
the teacher, their preference, and allotted time. What it does provide, regardless of how it is used 
in the classroom, is the need to be proficient in math. Math proficiency is needed especially in our 
world of advancing technology and physical science.  
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Alignment with Standards  

The problems have been developed to meet specific math and science benchmarks as stated in 
the NSF Project 2061. Project 2061’s benchmarks are statements of what all students should 
know or be able to do in science, mathematics, and technology by the end of grades 2, 5, 8, and 
12.  
 
The Physical Setting—The Universe (4A/H4) 
Grade 12: Mathematical models and computer simulations are used in studying evidence from 
many sources in order to form a scientific account of the universe (see problems 1, 2, 3, 4, 5, 6, 
7, 8, 9, 10, and 11).  

Forces of Nature (4G/H1) 
Grade 12: Gravitational force is an attraction between masses. The strength of the force is 
proportional to the masses and weakens rapidly with increasing distance between them (see 
problems 5, 6, 7, 8, 10, and 11).  

The Mathematical World—Symbolic Relationships 
(9B/H3)  
Grade 12: Any mathematical model, graphic or algebraic, is limited in how well it can represent 
how the world works. The usefulness of a mathematical model for predicting may be limited by 
uncertainties in measurements, by neglect of some important influences, or by requiring too much 
computation (see problems 2, 5, 6, and 11).  

http://www.project2061.org/publications/bsl/online/bolintro.htm


A Short Introduction to Black Holes 

The basic idea of a black hole is simply an object whose gravity is so strong that light cannot 
escape from it. It is black because it does not reflect light, nor does its surface emit any light.  
 
Before Princeton Physicist John Wheeler coined the term black hole in the mid-1960s, no one 
outside of the theoretical physics community really paid this idea much attention.  
 
In 1798, the French mathematician Pierre Laplace first imagined such a body using Newton's 
Laws of Physics (the three laws plus the Law of Universal Gravitation). His idea was very simple 
and intuitive. We know that rockets have to reach an escape velocity in order to break free of 
Earth's gravity. For Earth, this velocity is 11.2 km/sec (40,320 km/hr or 25,000 miles/hr). Now let's 
add enough mass to Earth so that its escape velocity climbs to 25 km/sec…2000 
km/sec…200,000 km/sec, and finally the speed of light: 300,000 km/sec. Because no material 
particle can travel faster than light, once a body is so massive and small that its escape velocity 
equals light-speed, it becomes dark. This is what Laplace had in mind when he thought about 
“black stars.” This idea was one of those idle speculations at the boundary of mathematics and 
science at the time, and nothing more was done with the idea for over 100 years.  
 
Once Albert Einstein had completed developing his Theory of General Relativity in 1915, the 
behavior of matter and light in the presence of intense gravitational fields was revisited. This time, 
Newton's basic ideas had to be extended to include situations in which time and space could be 
greatly distorted. There was an intense effort by mathematicians and physicists to investigate all 
of the logical consequences of Einstein's new theory of gravity and space. It took less than a year 
before one of the simplest kinds of bodies was thoroughly investigated through complex 
mathematical calculations.  
 
The German mathematician Karl Schwarzschild investigated what would happen if all the matter 
in a body were concentrated at a mathematical point. In Newtonian physics, we call this the 
center of mass of the body. Schwarzschild chose a particularly simple body: one that was a 
perfect sphere and not rotating at all. Mathematicians such as Roy Kerr, Hans Reissner, and 
Gunnar Nordstrom would later work out the mathematical details for other kinds of black holes.  

 
Schwarzschild black holes are actually very simple. Mathematicians even call them elegant 
because their mathematics is so compact, exact, and beautiful. They have a geometric feature 
called an “event horizon” (Problem 1) that mathematically distinguishes the inside of the black 
hole from the outside. These two regions have very different geometric properties for the way that 
space and time behave. The world outside the event horizon is where we live and contains our 
universe, but inside the event horizon, space and time behave in very different ways entirely 
(Problem 9). Once inside, matter and light cannot get back out into the rest of the universe. This 
horizon has nothing to do, however, with the Newtonian idea of an escape velocity.  
 
By the way, these statements sound very qualitative and vague to students, but the mathematics 
that goes into making these statements is both complex and exact. With this in mind, there are 
four basic kinds of black hole solutions to Einstein's equations:  



Schwarzschild: These are spherical and do not rotate. They are defined only 
by their total mass.  

 
Reissner-Nordstrom: These possess mass and charge but do not rotate.  
 
Kerr: These rotate and are flattened at the poles, and only described by their 
mass and amount of spin (angular momentum).  
 
Kerr-Nordstrom: These possess mass and charge, and they rotate.  

 
There are also other types of black holes that come up when quantum mechanics is applied to 
understanding gravity or when cosmologists explore the early history of the universe. Among 
these are 

Planck-Mass: These have a mass of 0.00000001 kilograms and a size that is 100 
billion billion times smaller than a proton.  

Primordial: These can have a mass greater than 10 trillion kilograms and were formed 
soon after the big bang and can still exist today. Smaller black holes have long-since 
vanished through evaporation in the time since the big bang. 

A Common Misconception 
Black holes cannot suck matter into them except under certain conditions. If the sun turned into a 
black hole, Earth and even Mercury would continue to orbit the new sun and not fall in. There are 
two common cases in the universe in which matter can be dragged into a black hole. Case 1: If a 
body orbits close to the event horizon in an elliptical orbit, it emits gravitational radiation, and its 
orbit will eventually decay in millions of years. Case 2: A disk of gas can form around a black 
hole, and through friction, matter will slowly slide into the black hole over time.  
 

How Black Holes are Formed 
Black holes can come in any size, from microscopic to supermassive. In today's universe, 
massive stars detonate as supernovae and this can create stellar-mass black holes (1 solar mass 
= 1.9×1030 kg). When enough of these are present in a small volume of space, like the core of a 
globular cluster, black holes can absorb each other and in principle, can grow to several hundred 
times the mass of the sun. If there is enough matter (i.e., gas, dust, and stars) for a black hole to 
“eat,” it can grow even larger. There is a black hole in the star-rich core of the Milky Way that has 
a mass equal to nearly 3 million suns. The cores of more massive and distant galaxies have 
supermassive black holes containing the equivalent of 100 million to as much as 10 billion suns. 
Astronomers are not entirely sure how these supermassive black holes evolved so quickly to their 
present masses given that the universe is only 14 billion years old.  
 
Currently, there are no known ways to create black holes with masses less than about 0.1 times 
the sun's mass, and through a speculative process called Hawking Radiation, black holes less 
than 1 trillion g in mass would have evaporated by now if they had formed during the Big Bang.  
 



A Short List of Known Black Holes 

Stellar-Mass  

Name  Constellation  Distance  
(light years)  

Mass  
(in solar units)  

Cygnus X–1  Cygnus  7000  16  
SS 433  Aquila  16,000  11  
Nova Mon 1975  Monocerous  2700  11  
Nova Persi 1992  Perseus  6500  5  
IL Lupi  Lupus  13,000  9  
Nova Oph 1977  Ophiuchus  33,000  7  
V4641 Sgr  Sagittarius  32,000  7  
Nova Vul 1988  Vulpecula  6500  8  
V404 Cygni  Cygnus  8000  12  
 
Note: The mass is the sum of the companion star and the black hole masses. 16 means 16 times 
the mass of the sun.  

Galactic-Mass  

Name  Constellation  Distance  
(light years)  

Mass  
(in solar units)  

NGC–205  Andromeda  2,300,000  90,000  
Messier–33  Triangulum  2,600,000  50,000  
Milky Way SgrA*  Sagittarius  27,000  3,000,000  
Messier–31  Andromeda  2,300,000  45,000,000  
NGC–1023  Canes Venatici  37,000,000  44,000,000  
Messier–81  Ursa Major  13,000,000  68,000,000  
NGC–3608  Leo  75,000,000  190,000,000  
NGC–4261  Virgo  100,000,000  520,000,000  
Messier–87  Virgo  52,000,000  3,000,000,000  
 
Note: The first three are called Intermediate-mass black holes. The remaining are called 
supermassive.  
  
 



1 The Event Horizon 

 
 
 

Black holes are objects that have such intense 
gravitational fields, they do not allow light to escape from 
them. They also make it impossible for anything that falls 
into them to escape, because to do so, they would have 
to travel at speeds faster than light. No forms of matter or 
energy can travel faster than the speed of light, so that is 
why black holes are so unusual! 
 
 
There are three parts to a simple black hole: 
 
Event Horizon - Also called the Schwarzschild radius, 
that's the part that we see from the outside. It looks like a 
black, spherical surface with a very sharp edge in space. 
 
Interior Space - This is a complicated region where 
space and time can get horribly mangled, compressed, 
stretched, and otherwise a very bad place to travel 
through. 
 
Singularity - That's the place that matter goes when it 
falls through the event horizon. It's located at the center 
of the black hole, and it has an enormous density. You 
will be crushed into quarks long before you get there! 
 
Black holes can, in theory, come in any imaginable size. 
The size of a black hole depends on the amount of mass 
it contains. It's a very simple formula, especially if the 
black hole is not rotating. These 'non-rotating' black holes 
are called Schwarzschild Black Holes. 
 

2GMEquation 1)     R =
c2

 

Equation 2)     R =1.48x10−27 M

Problem 1 -  The two formulas above give the Schwarzschild radius, R, of a black hole in terms 
of its mass, M. From Equation 1, verify Equation 2, which gives R in meters and M in kilograms, 
using  c= 3 x 108 m/sec for the speed of light, and  G = 6.67x10-11 Newtons m2/kg2 for the 
gravitational constant. 
 
Problem 2 - Calculate the Schwarzschild radius, in meters, for Earth where  
    M = 5.7 x 1024 kilograms.  
 
Problem 3 - Calculate the Schwarzschild radius, in kilometers, for the sun, where  
    M = 1.9 x 1030 kilograms. 
 
Problem 4 - Calculate the Schwarzschild radius, in kilometers, for the entire Milky Way, with a 
mass of 250 billion suns. 
 
Problem 5 - Calculate the Schwarzschild radius, in meters,  for a black hole with the mass of 
an average human being with M = 60 kilograms. 
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2 Time Dilation Near the Earth 

The modern theory of gravity, called the Theory of 
General Relativity,  developed by Albert Einstein in 1915 
leads to some very unusual predictions, which have all 
been verified by experiments. 
 
One of the strangest ones is that two people will 
experience the passage of time very differently if one is 
standing on the surface of a planet, and the other one is 
in space. This is because the rate of time passing 
depends on the strength of the gravitational field that the 
observer is in. 
 
For example, at the surface of a very dense neutron star, 
R = 20 km and M = 1.9 x 1030 kg, so  
 
                             T = t  (1- 0.15)1/2  =  0.92 t 
 
 This means that for every hour that goes by on 
the surface of the neutron star (T = 60 minutes), 
someone in space will see  t = 60 / 0.92 =  65 minutes 
pass from a vantage point in space.  

 
 
 

T  =   the time measured by someone  
located on a planet (seconds) 

  
t  =  the time measured by someone 

located in space (seconds) 
 
M  =   the mass of the planet (kg) 
 
R = the distance to the far-away 

observer from the planet (m) 
 
And the natural constants are: 
G = 6.67 x 10-11  Nt m2/kg2

C = 3 x 108   m/sec 

 The following problems require accuracy to the 11th decimal place. Most 
hand calculators only provide 9 digits. Students may use the 'calculator' 
accessory provided on all PCs and Macs.  
 
Problem 1 - The GPS satellites orbit Earth at a distance of R = 26,560 km. If the mass 
of Earth is 5.9 x 1024 kg, use the formula to determine the time dilation factor.  
 
Problem 2 - What is the time dilation factor at  Earth's surface?           
 
Problem 3 - What is the ratio of the dilation in space to the dilation at earth's surface? 
 
Problem 4 - At the speed of light (3 x 108 m/sec) how long does it take a radio signal 
from the GPS satellite to travel 26,560 km to a hand-held GPS receiver? 
 
Problem 5 - The excess time delay between a receiver at Earth's surface, and the 
GPS satellite is defined by the ratio computed in Problem 3, multiplied by the total 
travel time in Problem 4. What is the time delay for the GPS-Earth system?  
 
Problem 6 - From your answer to Problem 5, how much extra time does the radio 
signal take compared to your answer to Problem 4? 
 
Problem 7 - At the speed of light, how far will the radio signal travel during the extra 
amount of time? 
 
 

Space Math                                                  http://spacemath.gsfc.nasa.gov 
 



3   Time Dilation Near a Black Hole 

 
 
 

Artists illustration of a black hole with an orbiting 
disk of gas and dust. Friction in the disk causes 
matter to steadily flow inwards until it reaches the 
black hole event horizon. Magnetic forces in the 
disk cause matter to flow in complex jets and 
plumes. Time dilation causes delays in events 
taking place near the black hole compared to what 
distant observers will record. 

 Time dilation near a black hole is a lot more 
extreme than what the GPS satellite network 
experiences in orbit around Earth. 

T  =   time measured by someone  located on a 
planet (sec) 

  
t  =  time measured by someone located in space 

(sec) 
 
M  =   mass of the planet (kg) 
 
R = distance to the far-away observer from the 

planet (m) 

Problem 1 - In the time dilation formula above, evaluate the quantity 2 G M /c2  for a 
black hole with a mass of one solar mass (1.9 x 1030 kg), and convert the answer to 
kilometers to two significant figures. 
 
 
Problem 2 - Re-write the formula  in a more tidy form using your answer to Problem 1. 
 
 
Problem 3 - In the far future, a scientific outpost has been placed in orbit around this 
solar-mass black hole at a distance of 10 km. What will the time dilation factor be at this 
location? 
 
 
Problem 4 - A series of clock ticks were sent out by the satellite once each hour. What 
will be the time interval in seconds between the clock ticks by the time they reach a distant 
observer? 
 
 
Problem 5 - If one tick arrived at 1:00 PM at the distant observer, when will the next clock 
tick arrive? 
 
 
Problem 6 - A radio signal was sent by the black hole outpost to a distant observer. At the 
frequency of the signal, when transmitted from the outpost, the individual wavelengths take 
0.000001 seconds to complete one cycle. From your answer to Problem 3, how much 
longer will they take by the time they arrive at the distant observer? 
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4   Extracting Energy from a Black Hole 

 

 
 
 

Thanks to two orbiting X-ray observatories, astronomers have the first strong evidence of a 
supermassive black hole ripping apart a star and consuming a portion of it. The event, captured by 
NASA's Chandra and ESA's XMM-Newton X-ray Observatories, had long been predicted by theory, but 
never confirmed until now. Giant black holes in just the right mass range would pull on the front of a 
closely passing star much more strongly than on the back. Such a strong tidal force would stretch out a 
star and likely cause some of the star's gasses to fall into the black hole. The infalling gas has been 
predicted to emit just the same blast of X-rays that have recently been seen in the center of galaxy RX 
J1242-11 located 700 million light years from the Milky Way, in the constellation Virgo. (NASA news report 
at  http://chandra.harvard.edu/photo/2004/rxj1242/ 
 
Problem 1 - The size of the event horizon of a black hole (called the Schwarschild radius) is 
given by the formula R = 2.8 M, where R is the radius in km, and M is that mass of the black 
hole in units of the sun's mass. A supermassive black hole can have a mass of 100 million 
times the sun. What is its Schwarschild radius in: A) kilometers, B) multiples of the Earth orbit 
radius called an Astronomical Unit (1 AU = 149 million km), C) compared to the orbit of Mars 
(1.5 AU) 
 
 
Problem 2 - Black holes are one of the most efficient phenomena in converting matter into 
energy. As matter falls inward in an orbiting disk of gas, friction heats the gas up, and the 
energy released can be as much as 7% of the rest mass energy of the infalling matter.  The 
quasar 3C273 has a power output of  3.8 x 1038 Joules/second. If E = mc2 is the formula that 
converts mass (in kg) into energy (in Joules) and c = the speed of light, 3 x 108 m/sec, how 
many grams per year does this quasar luminosity imply if 1 year = 3.1 x 107 seconds? 
 
 
Problem 3 - If the mass of the Sun is 1.9 x 1030 kg, how many suns per year have to be 
consumed by the 3C273 supermassive black hole at the black hole conversion efficiency of 
7%?  (Note: 7% efficiency means that for every 100 kg involved, 7 kg are converted into pure 
energy by E=mc2 )  
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5   The Milky Way Black Hole 

 
 
 

At the center of our Milky Way Galaxy lies a black hole, 
called Sagittarius A*, with over 2.6 million times the mass 
of the Sun. Once a controversial claim, this astounding 
conclusion is now virtually inescapable and based on 
observations of stars orbiting very near the galactic 
center.  
 
The Chandra image to the left shows the x-ray light from 
a region of space a few light years across. The black hole 
is invisible, but it is near the center of this image. The gas 
near the center produces x-ray light as it is heated. Many 
of the 'stars' in the field probably have much smaller 
black holes near them that are producing the x-ray light 
from the gas they are consuming. 

Astronomers patiently followed the orbit of a particular star, designated S2. Their results 
convincingly show that S2 is moving under the influence of the enormous gravity of an 
unseen object, which must be extremely compact and contain huge amounts of matter yet 
emits no light -- a supermassive black hole. The drawing above shows the orbit shape. 
 
Problem 1 - Kepler's Third Law can be used to determine the mass of a body by measuring 
the orbital period, T,  and orbit radius, R, of a satellite.  If R is given in units of the 
Astronomical Unit (AU) and T is in years, the relationship becomes R3 / T2= M, where M is 
the mass of the body in multiples of the sun's mass.  In these units, for Earth, R = 1.0 AU, 
and T = 1 year, so M = 1.0 solar masses. In 2006, the Hubble Space Telescope, found that 
the star Polaris has a companion, Polaris Ab, whose distance from Polaris is 18.5 AU and 
has a period of  30 years. What is the mass of Polaris? 
 
Problem 2 -  The star S2 orbits the supermassive black hole Sagittarius A*. Its period is 
15.2 years, and its orbit distance is about 840 AU. What is the estimated mass of the black 
hole at the center of the Milky Way? 
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6   Black  Holes  and Tidal Forces  

 
 
 

A tidal force is a difference in the strength of gravity 
between two points. The gravitational field of the 
Moon produces a tidal force across the diameter of 
Earth, which causes Earth to deform. It also raises 
tides of several meters in the solid Earth, and larger 
tides in the liquid oceans.  
  
If the tidal force is stronger than a body's 
cohesiveness, the body will be disrupted. The 
minimum distance that a satellite comes to a planet 
before it is shattered this way is called its Roche 
Distance. The artistic image to the left shows what 
tidal disruption could be like for an unlucky moon. 
 
A human falling into a black hole will also 
experience tidal forces. In most cases these will be 
lethal! The difference in acceleration between the 
head and feet could be many thousands of Earth 
gravities. A person would literally be pulled apart, 
and his atoms drawn into a narrow string of matter! 
Some physicists have termed this process 
spaghettification! 

Problem 1 - The equation lets us calculate the tidal acceleration, a,  across a body with a 
length of d. The acceleration of gravity on Earth's surface is 9.8 m/sec2. The tidal 
acceleration between your head and feet is given by the above formula. For M = the mass 
of Earth (5.9 x 1024 kg), R = the radius of Earth (6.4 x 106 m) and the constant of gravity 
whose value is G = 6.67 x 10-11 Nt m2/kg2 calculate the tidal acceleration, a, if d = 2 
meters. 
 
 

Problem 2 - What is the tidal acceleration across the full diameter of Earth? 
 
 
Problem 3 - A stellar-mass black hole has the mass of the sun (1.9 x 1030 kg), and a 
radius of 2.8 km. What would be the tidal acceleration across a human at a distance of 100 
km?  
 
 
 
Problem 4 - A supermassive black hole has 100 million times the mass of the sun (1.9 x 
1038 kg), and a radius of 280 million km. What would be the tidal acceleration near the 
event horizon of the supermassive black hole?  
 
 
Problem 5 - Which black hole could a human enter without being spaghettified? 
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7   Falling Into a Black Hole 

 
 
 

 

An object that falls into a black hole will cross the event 
horizon, and speed up as it gets closer. This is like a ball 
traveling faster and faster as it is dropped from a tall 
building. Suppose the particle fell from infinity. How fast 
would it be traveling? We can answer this question by 
considering the concepts of kinetic energy (K.E.) and 
gravitational potential energy (P.E.): 

          21.
2

K E mV=            and       
GMmP E. . =   

R
The kinetic energy that the particle with mass, m, will 
gain as it falls, will depend on the total potential energy it 
has lost in traveling from infinity to a distance R. By 
setting the two equations equal to each other, we can 
relate the kinetic energy a particle gains as it falls to its 
current distance of R from the center of mass. The 
quantity, M, is the mass of the gravitating body the 
particle is falling towards. G is the constant of gravitation 
which equals 6.67 x 10-11 Nt m2/kg2 

                               21
2

GMmmV
R

=   

We can then solve for the speed, V, in terms of R 
 

                           
2GMV =   

R
 

Problem 1 - Suppose a body falls to Earth and strikes the ground. How fast will it be traveling 
when it hits if M = 5.9 x 1024 kg and R = 6,378 km? Explain why this is the same as Earth's 
escape velocity? 
 
 
Problem 2 -  NASA's ROSSI satellite was used in 2004 to determine the mass and radius of a 
neutron star in the binary star system named EXO 0748-676, located about 30,000 light-years 
away in the southern sky constellation Volans, or the Flying Fish. The neutron star was 
deduced to have a mass of  1.8 times the sun, and a radius of 11.5 km. A) How fast, in km/sec, 
will a particle strike the surface of the neutron star if the mass of the sun is 1.9  x 1030 kg? B) 
In terms of percentage, what will be the speed compared to the speed of light: 300,000 
km/sec? 
 
 
Problem 3 - The star HD226868 is a binary star with an unseen companion. It is also the 
most powerful source of X-rays in the sky second to the sun - it's called Cygnus X-1. 
Astronomers have determined the mass of this companion to be 8.7 times the sun. As a black 
hole, its event horizon radius would be R = 2.8 x 8.7 = 24 km. A) How fast, in km/sec, would a 
body be traveling as it passed through the event horizon? B) In percentage compared to the 
speed of light? 
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8   Black Holes…Hot Stuff! 

The farther a particle falls towards a black hole, 
the faster it travels, and the more kinetic energy it 
has. Kinetic energy is mathematically defined as 
K.E. = 1/2 m V2 where m is the mass of the 
particle and V is its speed. 
 
Suppose all this energy is converted into heat 
energy by friction as the particle falls, and that this 
added energy causes nearby gases to heat up. 
How hot will the gas get? The equivalent amount 
of thermal energy, T.E., carried by a single particle 
is 

                 
3T E. . = kT  
2

 
 
 

where Boltzman's Constant k = 1.38 x 10-23 
Joules/deg.  If we set K.E = T.E we get 

                          
mV 2

T =  
3k

If all the particles in a gas carried this same kinetic 
energy, then we would say the gas has a 
temperature of T degrees Kelvin. We also know 
that the potential energy of the particle is given by  

     . . GMmP E

An artist's impression of a black hole 
orbiting a companion star, and 
gravitationally attracting gas from the 
star into an orbiting accretion disk. 
Through friction, the gas becomes hotter 
as it approaches the black hole, turning 
from red to yellow to white. Most of the 
gas is swallowed by the black hole, but 
some is magnetically launched in jets 
away from the black hole at almost the 
speed of light. (Credit: M. Weiss, 
NASA/Chandra)

R
=  

 
So if we set P.E = T.E we also get the 
temperature 

                   
2

3
GMmT    
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=

Problem 1 - The formula T = 2 G M m/(3kR) gives the approximate temperature of hydrogen 
gas (m = 1.6 x 10-27 kg) in an accretion disk around a black hole. To two significant figures, 
what is the temperature for the material at the distance of Earth's orbit for a solar-mass black 
hole? (R = 1.47 x 1011 m, M = 1.9 x 1030 kg, for the constant of gravity  G = 6.67 x 10-11 Nt 
m2/kg2)? 
 
 
Problem 2 - How hot would the disk be at the distance of Neptune (R = 4.4 x 1012 meters)? 
 
 
 
Problem 3 - X-rays are the most common forms of energy produced at temperatures above 
100,000 K. Visible light is produced at temperatures above 2,000 K.  Infrared radiation is 
commonly produced for temperatures below 500 K. What would you expect to see if you 
studied the accretion disk around a solar-mass sized black hole? 
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9   Black Holes…..What's inside? 

 
 
 

Outside a black hole, we have the normal 
universe of space, time, matter and energy 
we have all come to know. But inside, things 
are very different. We know this because the 
same mathematics that predicts black holes 
should exist, also predicts what to find inside 
them.  
 
One of the biggest surprises is the way that 
time and space, themselves, behave. 
  
The figure to the left shows a few of the 
regions that have been identified from the 
mathematics of rotating black holes. 

Problem 1 -  In relativity, space and time are part of a single 4-dimensional thing called 
spacetime. There are 3 dimensions to space and 1-dimension to time. Every point, called 
an event, has three coordinates to describe its location in space, and one extra coordinate 
to describe its location in time. We write these as an ordered set like A(x,y,z,t) or B(x,y,z,t). 
 
Write the ordered set for the following event called A: I travel east 3 miles, north 5 miles, 
and up 1 miles, at 9:00 a.m on February 16, 2008. (Use x along East-West, y along North-
South, z along Up-Down, with East, North and Up directions positive.)  
 
Problem 2 - Suppose you travel from one event with coordinates A(3 km, 6 km, 2 km, 
5:00 p.m) to another event B(5 km, 7 km, 3 km, 8:00 p.m). How far did you travel in space 
in each direction during the time interval from 5:00 p.m to 8:00 p.m? 
 
Problem 3 - Use the Pythagorean Theorem to calculate the actual distance in space in 
Problem 2. 
 
Problem 4 - The 4-dimensional, hyperdistance between the events is found by using the 
hyperbolic Pythagorean Theorem formula   D2 = -c2T2 + x2 + y2 + z2 where c is the speed 
of light (c = 300,000 km/sec). Calculate the hyperdistance, D2,  between Events A and B in 
Problem 2. 
 
Problem 5 - Based on your answer to Problem 4, which part of D2 makes the largest 
contribution to the hyperdistance, the time-like part, T, or the space-like part (x,y,z)? 
 
Problem 6 -  Inside a black hole, the formula for D2 changes to D2 = c2T2 - x2 - y2 - z2 

Suppose Events A and B are now happening inside the black hole. What is the hyper-
distance between them, and does the space or time-like part make the biggest 
contribution? 
 
Problem 7 - If an observer defines 'time' as the part of D2 that has a negative sign, and 
'space' as the part that has the positive sign, can you explain what happens as the traveler 
passes inside the black hole? 
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10   Black Hole Power 

Black holes are sometimes surrounded by a disk 
of orbiting matter. This disk is very hot. As matter 
finally falls into the black hole from the inner 
edge of that disk, it releases about 7% of its rest-
mass energy in the form of light. Some of this 
energy was already lost as the matter passed 
through, and heated up, the gases in the 
surrounding disk. But the over-all energy from 
the infalling matter is about 7% of its rest-mass in 
all forms (heat+ light). 
 
The power produced by a black hole is 
phenomenal, with far more energy per kilogram 
being created than by ordinary nuclear fusion, 
which powers the sun.  
 
A black hole accretion disk  (M. Weiss NASA/Chandra )

 
 
 

Problem 1 -  The  event horizon of a black hole has a radius of R = 2.8 M kilometers, where 
M is the mass of the black hole in multiples of the sun's mass. Assume the event horizon is a 
spherical surface, so its surface area is S = 4 π R2. What is the surface area of A) a stellar 
black hole with a mass of 10 solar masses? B) a supermassive black hole with a mass of 
100 million suns? 
 
 
Problem 2 - What is the volume of a spherical shell with the surface area of the black holes 
in Problem 1, with a thickness of one meter? 
 
 
Problem 3 - If the density of gas near the horizon is 1016 atoms/meter3 of hydrogen, how 
much matter is in each black hole shell, if the mass of a hydrogen atom is 1.6 x 10-27 kg? 
 
 
Problem 4 - If E = m c2 is the rest mass energy, E, in Joules, for a particle with a mass of m 
in kg, what is the rest mass energy equal to the masses in Problem 3 if c = 3 x 108 m/sec is 
the speed of light and only 7% of the mass produced energy? 
 
 
Problem 5 - Suppose the material was traveling at 1/2 the speed of light as it crossed the 
event horizon, how much time does it take to travel one meter if c = 3 x 108 m/sec is the 
speed of light? 
 
 
Problem 6 - The power produced is equal to the energy in Problem 4, divided by the time in 
Problem 5. What is the percentage of power produced by each black hole compared to the 
sun's power of  3.8 x 1026 Joules/sec? 
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11   Black Hole…Fade-out!  

As seen from a distance, not only does the 
passage of time slow down for someone 
falling into a black hole, but the image fades 
to black!  
 
This happens because, during the time that 
the object reaches the event horizon and 
passes beyond, a finite number of light 
particles (photons) will be emitted. Once 
these have been detected to make an image, 
there are no more left because the object is 
on the other side of the event horizon and 
the photons cannot escape. A star, 
collapsing to a black hole, will be going very 
fast as it collapses, then appear to slow 
down as time dilates. Meanwhile, the image 
will become redder and redder, until it literally 
fades to black! 
 
Photographs taken by the Hubble Space 
Telescope of the black-hole candidate called 
Cygnus XR-1 detected  two instances where 
a hot gas blob appeared to be slipping past 
the event horizon for the black hole. Because 
of the gravitational stretching of light, the 
fragment disappeared from Hubble's view 
before it ever actually reached the event 
horizon. The pulsation of the blob, an effect 
caused by the black hole's intense gravity, 
also shortened as it fell closer to the event 
horizon. Without an event horizon, the blob 
of gas would have brightened as it crashed 
onto the surface of the accreting body. See 
The Astrophysical Journal, 502:L149–L152, 
1998 August 1. (Diagram courtesy  Ann Field: 
STScI) 

 
 
 

Problem 1 -  The exponential formula above predicts the decay of the light from matter 
falling in to a black hole. T is the time in seconds measured by distant observer, and M is the 
mass of the black hole in units of solar masses. How long does it take for the light to fall to 
half its initial luminosity (i.e. power in units of watts) given by L0 for a M =1.0 solar mass, 
stellar black hole? 
 
Problem 2 -  How long will your answer be, in years, for a supermassive black hole with M = 
100 million times the mass of the Sun? 
 
Problem 3 -  The supermassive black hole in Problem 2 'swallows' a star. If the initial 
luminosity, L0, of the star is 2.5 times the Sun's, to two significant figures,how long will it take 
before the brightness of the star fades to 0.0025 Suns, and can no longer be detected from 
Earth? 
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Additional Mathematical Resources About Black Holes 

It is a challenge to find mathematical resources about black holes that are not too 
advanced, but that still give the student and teacher some idea of how to think about 
them more quantitatively.  Ironically, if you GOOGLE 'black hole math' you will 
quickly discover that this very math guide is among the Top-7 options! Clearly there 
is a big need for this kind of resource that can be used by the K-12 community. Here 
are just a few others that might be helpful: 
 
Death Spiral Around a Black Hole - Hubble Discovery 
       http://hubblesite.org/newscenter/archive/releases/2001/03 
 
 
Chandra Observatory Detects Event Horizon - 
                    http://chandra.harvard.edu/photo/2001/blackholes/ 
 
 
Ask the Astronomer: 87 FAQs About Black Holes: 
                      http://www.astronomycafe.net/qadir/abholes.html 
 
 
Imagine the Universe: Black Hole FAQs 
          http://imagine.gsfc.nasa.gov/docs/ask_astro/black_holes.html 
 
 
New Evidence for Black Holes from NASA 
           http://science.nasa.gov/headlines/y2001/ast12jan_1.htm 
 
 
A trip into a black hole 
                      http://antwrp.gsfc.nasa.gov/htmltest/rjn_bht.html 
 



A note from the Author, 
 
 Since they first came into public view in the early 1970s, black holes 
have been a constant source of curiosity and mystery for millions of adults 
and children. No astronomer has had the experience of visiting a classroom, 
and NOT being asked questions about these weird objects with which we 
share our universe. 
 
 Beyond answering that they are objects with such intense gravity that 
even light cannot escape them, we tend to be at a loss for what to say next. 
The mathematics of Einstein's  General Theory of Relativity are extremely 
complex even for advanced undergraduates in mathematics, so we tend to 
resort to colorful phrases and actual hand-waving to describe them to eager 
students. 
 
 Actually, there are many important aspects of black holes that can be 
readily understood by using pre-algebra (scientific notation), Geometry 
(concepts of space and coordinates, Pythagorean Theorem), Algebra I 
(working with simple formulae), and Algebra II (working with asymptotic 
behavior). 
 
 This book is a compilation of some of my favorite elementary problems 
in black hole physics. They will introduce the student to the important 
concept of the event horizon, time dilation, and how energy is extracted 
from a black hole to create many kinds of astronomical phenomena. Some of 
these problems may even inspire a student to tackle a Science Fair or Math 
Fair problem! 
 
 Black holes are indeed something of a mystery, but many of their most 
well-kept secrets can be understood with just a little mathematics. I hope 
the problems in this book will inspire students to learn more about them! 
  
 
 
                    Sten Odenwald 
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	The German mathematician Karl Schwarzschild investigated what would happen if all the matter in a body were concentrated at a mathematical point. In Newtonian physics, we call this the center of mass of the body. Schwarzschild chose a particularly simple body: one that was a perfect sphere and not rotating at all. Mathematicians such as Roy Kerr, Hans Reissner, and Gunnar Nordstrom would later work out the mathematical details for other kinds of black holes. 




