
8.1.1 Compound Interest 

 
 
 

How it works: Suppose this year I put $100.00 in the bank. The bank invests this money and at the 
end of the year gives me $4.00 back in addition to what I gave them.  I now have $104.00. My initial 
$100.00 increased in value by  100% x ($104.00 - $100.00)/ $100.00) = 4%.  Suppose I gave all of this 
back to the bank and they reinvested in again. At the end of the second year they have me another 4% 
increase. How much money do I now have? I get back an additional 4%, but this time it is 4% of $104.00 
which is  $104.00 x 0.04 = $4.16.  Another way to write this after the second year is: 
 
                                                        $100.00 x (1.04) x (1.04) =  $108.16. 
 
After 6 years, at a gain of 4% each year, my original $100.00 is now worth: 
 
                                $100.00 x (1.04) x (1.04) x (1.04) x (1.04) x (1.04) x (1.04) =  $126.53 
 
Do you see the pattern?   The basic formula that lets you calculate this 'compound interest' easily is: 
 

                                                               F = B x (1 + P/100)
T

 
where : 
B = the starting amount, P= the annual percentage increase, T = number of investment years.  
 
Question: In the formula, why did we divide the interest percentage by 100 and then add it to 1? 
 
 
 
 
Problem 1:  The US Space program invested $26 billion to build the Apollo Program to send 7 
missions to land on the Moon.  
 
A) What was the average cost for each Apollo mission?  
 
B) Since the last moon landing in 1972,  inflation has averaged about 4% each year. From your 
answer to A), how much would it cost to do the same Apollo moon landing in 2007? 
 
 
 
 
Problem 2:  A  NASA satellite program was originally supposed to cost $250 million when it 
started in 2000. Because of delays in approvals by Congress and NASA, the program didn't get 
started until 2005. If the inflation rate was 5% per year, A) how much more did the mission cost 
in 2005 because of the delays? B) Was it a good idea to delay the mission to save money in 
2000? 
 
 
 
 
Problem 3:   A scientist began his career with a salary of $40,000 in 1980, and by 2000 this had 
grown to $100,000. A) What was his annual salary gain each year? B) If the annual inflation rate 
was 3%, why do you think that his salary gain was faster than inflation during this time? 
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8.1.1Answer Key 
 
Do you see the pattern?   Each year you invest the money, you multiply what you started with the 
year before by 1.04. 

                                                               F = B x (1 + P/100)
T

 
 
Question: In the formula, why did we divide the interest percentage by 100 and then add it to 1? 
Because if each year you are increasing what you started with by 4%, you will have 4% more at 
the end of the year, so you have to write this as 1 + 4/100 = 1.04 to multiply it by the amount you 
started with. 
 
 
 
Problem 1:  The US Space program invested $26 billion to build the Apollo Program to send 7 
missions to land on the Moon.  A) What was the average cost for each Apollo mission?  
                                 Answer :  $26 billion/7 =  $3.7 billion. 
 
B)  Answer: The number of years is  2007-1972 = 35 years. Using the formula, and a calculator: 

          F = $3.7 billion  x (1 + 4/100)
35

      =  $3.7 billion x (1.04)
35

           =  $14.6 billion. 
 
 
 
 
 
Problem 2: A) Answer:   The delay was 5 years, so 

                   F = $250 million  x (1 + 5/100)
5
     = $250 million x (1.28)    =  $319 million 

 
The mission cost $69 million more because of the 5-year delay. 
 
B) No, because you can't save money starting an expensive mission at a later time. Because of 
inflation, missions always cost more when they take longer to start, or when they take longer to 
finish. 
 
 
 
 
Problem 3:   A scientist began his career with a salary of $40,000 in 1980, and by 2000 this had 
grown to $100,000. A) What was his annual salary gain each year? Answer A)  The salary grew 
for 20 years, so using the formula and a calculator, solve for X the annual growth: 
 

  $100,000 = $40,000 x ( X  )
20 

     X  =   (100,000/40,000) 
1/20    

    X = 1.047 
 
So his salary grew by about 4.7% each year, which is a bit faster than inflation. 
 
B) If the inflation rate was 3%, why do you think that his salary gain was faster than inflation 
during this time?  Answer:  His salary grew faster than inflation because his employers valued 
his scientific research and gave him average raises of 1.5% over inflation each year!   
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8.3.1 The number  ‘e’ 

 Most elements come in 
several varieties called isotopes, 
which only differ in the number of 
neutrons that they contain. Most 
isotopes are unstable, and will 
decay into more stable isotopes or 
elements over time.  
 The decay time is 
measured by the time it takes half 
of the atoms to change into other 
forms and is called the half-life. A 
simple formula based on powers 
of the number ‘e’ connect the 
initial number of atoms to the 
remaining number after a time 
period has passed: 
 

       N(t)=a e-0.69t/T 
 
where T is the half-life in the same 
time units as t. 
 

Problem 1 – What is the initial number of atoms at a time of t=0? 
Answer:  N(t) = a 
 
 
 
Problem 2 – Use a bar-graph to plot the function N(t) for a total of 6 half-lives 
with a = 2048.  
 
 
 
Problem 3 - If a=1000 grams and T = 10 minutes, what will be the value of N(t) in 
when t = 1.5 hours? 
 
 
 
Problem 4 – Carbon has an isotope called ‘carbon-14’ that decays to ordinary 
nitrogen in 5770 years. Suppose that a sample of plant material started out with 
10 grams of carbon-14. If the half-life  5770 years, how many grams of carbon-14 
will be present after 3,000 years? 
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Answer Key 8.3.1 
 Problem 1 – What is the initial number of atoms at a time of t=0? 

Answer:  N(0) = a 
 
 
 
Problem 2 – Use a bar-graph to plot the function N(t) for a total of 6 half-lives with a = 
2048.  Answer: N =  1024, 512, 256, 128, 64, 32 
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Problem 3 - If a=1000 grams and T = 10 minutes, what will be the value of N(t) in 
when t = 1.5 hours? 
 
Answer:  1.5 hours = 90 minutes, so since t and b are now in the same time units: 
 

N(90 minutes) = 1000 x e
(-0.69*90/10)

 
                                      =  1000 x 0.002 
                                      =   2 grams    
 
 
 
Problem 4 – Carbon has an isotope called ‘carbon-14’ that decays to ordinary nitrogen 
in 5770 years. Suppose that a sample of plant material started out with 10 grams of 
carbon-14. If the half-life is 5770 years, how many grams of carbon-14 will be present 
after 3,000 years? 

Answer:  a = 10 grams, T = 5770 years so N(t) = 10 e
-0.69(t/5770)

 
After t = 3000 years, 

N(3000) = 10 e
-0.69(3000/5770) 

N(3000) = 10 (0.7)                        N(3000) = 7 grams. 
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8.3.2 The number  ‘e’ 

 After a star becomes a 
supernova, the light that its 
expanding gas produces fades 
over time. Astronomers have 
discovered that this fade-out is 
controlled by the light produced by 
the decay of radioactive nickel 
atoms.   
 This series of two 
photographs were taken by Dr. 
David Malin at the Anglo-
Australian Observatory in 1987 
and shows a before-and-after 
view of the supernova of 1987. 
 Careful studies of the 
brightness of this supernova in the 
years following the explosion 
reveal the ‘radioactive decay’ of 
its light.

 Supernova 1987A produced 24,000 times the mass of our Earth in nickel-
56 atoms, which were ejected into the surrounding space and began to decay to 
a stable isotope called cobalt-56. The half-life of nickel-56 is 6.4 days. Eventually 
the cobalt-56 atoms began to decay into stable iron-56 atoms. The half-life for the 
cobalt decay is 77 days. 
 

Problem 1 – Using the half-life formula N(t) = a e
-0.69(t/T)

, how much of the 
original nickel-56 (with T = 6.4 days) was still present in the supernova debris 
after 100 days? 
 
 
Problem 2 – Assuming that no further light is produced by the nickel-56 decays 
after 100 days, and that for t > 100 days the light is produced by cobalt-56 decay:  
 
A) Create a table showing the predicted brightness, L, of this supernova between 
100 days and 900 days (2.5 years) after the explosion if at t=100 days the 
brightness of the supernova equals 80 million times that of the sun. (Answers to 2 
significant figures;  
 
B) Graph the data, called a light curve, L(t), for the first 500 days of the decay. 
 
C) How long did it take for the supernova to fade until it exactly equaled the 
luminosity of our sun (L = 1.0)? 
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Answer Key 8.3.2 
 Problem 1 – Using the half-life formula N(t) = a e

-0.69(t/T)
,  how much of the original 

nickel-56 (with T = 6.4 days) was still present in the supernova debris after 100 days? 
 
Answer:   The paragraph says that the supernova produced 24,000 times the mass of 
the earth in nickel-56, so a = 24,000 and for T = 6.4 days we have 
 

N(100 days) = 24000 e
-0.69(100/6.4)

 
               N(100 days) = 24000 (0.00021) 
               N(100 days) =  0.5 times the Earth’s mass! 
 
 
Problem 2 – Assuming that no further light is produced by the nickel-56 decays after 
100 days, and that for t > 100 days the light is produced by cobalt-56 decay:  
 
A) Create a table showing the predicted brightness, L, of this supernova between 100 
days and 900 days (2.5 years) after the explosion if at t=100 days the brightness of the 
supernova equals 80 million times that of the sun (Answers to 2 significant figures);  
Answer below. 
 
B) Graph the data, called a light curve, L(t), for the first 500 days of the decay. 
Answer below. 
 
C) How long did it take for the supernova to fade until it exactly equaled the luminosity 
of our sun (L = 1.0)? 

Answer:  Solve   1.0 = 80 million e
(-0.69(t-100)/77) 

.  
 
Ln(1.0/80 million) =  -0.69(t-100)/77       so  t -100 =  77 ln(80,000,000)/0.69    and so  
t =  2,131 days or 5.8 years. 
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100 80,000,000 
200 33,000,000 
300 13,000,000 
400 5,400,000 
500 2,200,000 
600 910,000 
700 370,000 
800 150,500 
900 62,000 
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8.4.1 Logarithmic Functions 

 One of the very first things that 
astronomers studied was the number of 
stars in the sky. From this, they hoped to get 
a mathematical picture of the shape and 
extent of the entire Milky Way galaxy. This is 
perhaps why some cartoons of 'astronomers' 
often have them sitting at a telescope and 
tallying stars on a sheet of paper! Naked-eye 
counts usually number a few thousand, but 
with increasingly powerful telescopes, fainter 
stars can be seen and counted, too.   
 Over the decades, sophisticated 'star 
count' models have been created, and 
rendered into approximate mathematical 
functions. One such approximation, which 
gives the average number of stars in the sky, 
is shown below: 

Log10N(m) = -0.0003 m
3
  +  0.0019 m

2
 + 0.484 m - 3.82 

 This polynomial is valid over the range [+4.0, +25.0] and gives the Log10 of 
the total number of stars per square degree fainter than an apparent magnitude of 
m. For example, at an apparent magnitude of +6.0, which is the limit of vision for 

most people, the function predicts that Log10N(6) = -0.912 so that there are  

10
-0.912

 = 0.12 stars per square degree of the sky. Because the full sky area is 
41,253 square degrees, there are about 5,077 stars brighter than, or equal to, this 
magnitude. 
 
Problem 1 - A small telescope can detect stars as faint as magnitude +10. If the 
human eye-limit is +6 magnitudes, how many more stars can the telescope see 
than the human eye? 
 
 
 
Problem 2 - The Hubble Space Telescope can see stars as faint as magnitude 
+25. About how many stars can the telescope see in an area of the sky the size 
of the full moon (1/4 square degree)? 
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Answer Key 8.4.1 
 Problem 1 - Answer: From the example,  there are 0.12 stars per square degree 

brighter than +6.0 

                               Log10N(+10) = -0.0003 (10)3  +  0.0019 (10)2  + 0.484 (10) - 3.82 
                                           =  -0.3 +0.19 + 4.84 - 3.82 
                                           =  +0.55 

So there are 10
.55

 = 3.55 stars per square degree brighter than +10. Converting this to 
total stars across the sky ( area = 41,253 square degrees) we get 5,077 stars brighter 
than +6 and   146,448 stars brighter than +10.  The number of additional stars that the 
small telescope will see is then   146,448 - 5,077 = 141,371 stars. 
 
 
 
 

Problem 2 -  Answer:  Log10N(25) =  -0.0003 (25)3  +  0.0019 (25)2  + 0.484 (25) - 3.82 
                           =  +4.78 
So the number of stars per square degree is 10+4.78 = 60,256. For an area of the sky 
equal to 1/4 square degree we get  (60,256) x (0.25) =  15,064 stars. 
 
 

Space Math                                http://spacemath.gsfc.nasa.gov 
 



8.4.2 Logarithmic Functions 

 Astronomers and physicists often find linear plotting scales very cumbersome to 
use because the quantities you would most like to graph differ by powers of 10 in size, 
temperature or mass. Log-Log graphs are commonly used to see the 'big picture'. 
Instead of a linear scale '1 kilometer, 2 kilometers 3 kilometers etc'  a Logarithmic scale is 
used where '1' represents 101, '2' represents 102 …'20' represents 1020 etc. Below we will 
work with a Log(T) log(D) graph where T is the temperature, in Kelvin degrees, of matter 

and D is its density in kg/m
3
. 

 
Problem 1 - Plot some or all of the objects listed in the table below on a Log-Log graph 
with the 'x' axis being Log(D) and 'y' being Log(T). 
 
Problem 2 - A) Draw a line that includes the three black hole objects, and shade the 
region that forbids objects denser or cooler than this limit. B) Draw a line, and shade the 
region  that represents the quantum temperature limit, which says that temperatures may 

not exceed T<10
32

 K. 
 
Problem 3 - On this graph, plot the curve representing the temperature, T, and density 
D, of the Big Bang at a time, t, seconds after the Big Bang given by 

                          

1
10 2 1.5x10  tT


 2

  K          and            kg/m
3
 

84 10  tD x 
 

 Object or Event D  

(kg/m
3
) 

T  
(K) 

1 Human 1000 290 
2 Bose-Einstein Condensate 2x10-12 2x10-7 
3 Earth atmosphere @ sea level 1.0 270 
4 Core of the sun 1x105 1x107 
5 Core of Earth 1x104 6x103 
6 Water at Earth's surface 1x103 270 
7 Solar corona 2x10-14 2x106 
8 White dwarf core 2x109 2x104 
9 Neutron star core 2x1017 4x109 

10 Quantum limit 4x1094 2x1032 
11 Interstellar medium - cold 2x10-27 2x104 
12 Dark interstellar cloud 2x10-23 40 
13 Rocks at surface of  the Earth 3x103 270 
14 Liquid Helium 1x102 2 
15 Cosmic background radiation 5x10-31 3 
16 Solar-mass Black Hole 7x1019 6x10-8 
17 Supermassive black hole 100 6x10-17 
18 Quantum black hole 3x1060 1x1013 
19 Controlled fusion Tokamak Reactor 1x10-8 2x108 
20 Intergalactic medium - hot 2x10-27 2x108 
21 Brown dwarf core 2x106 1x106 
22 Cosmic gamma-rays ( 1 GeV) 1x10-9 1 x 1013 
23 Cosmic gamma-rays (10 billion GeV) 1x10-17 1 x 1023 
24 Starlight in the Milky Way 2 x 10-11 6,000 
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Answer Key 8.4.2 
  The figure below shows the various items plotted, and excluded regions cross-

hatched. Students may color or shade-in the permitted region.   
. 
Inquiry: Can you or your students  come up with more examples of objects or systems 
that occupy some of the seemingly  'barren'  regions of the permitted area? 
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8.4.4 Logarithmic Functions 

 The universe is a BIG place…but it also has some very small ingredients! 
Astronomers and physicists often find linear plotting scales very cumbersome to use 
because the quantities you would most like to graph differ by powers of 10 in size, 
temperature or mass. Log-Log graphs are commonly used to see the 'big picture'. 
Instead of a linear scale '1 kilometer, 2 kilometers 3 kilometers etc'  a Logarithmic scale is 
used where '1' represents 101, '2' represents 102 …'20' represents 1020 etc. A calculator 
easily lets you determine the Log of any decimal number. Just enter the number, n, and 
hit the 'log' key to get m = log(n). Then just plot a point with 'm' as the coordinate number! 
 Below we will work with a Log(m) log(r) graph where m is the mass of an object in 
kilograms, and r is its size in meters. 
 
Problem 1 - Plot some or all of the objects listed in the table below on a LogLog graph 
with the 'x' axis being Log(M) and 'y' being Log(R). 
 
Problem 2 - Draw a line that represents all objects that have a density of A) nuclear 

matter (4 x 10
17

 kg/m
3
), and B) water (1000 kg/m

3
).  

 
Problem 3 - Black holes are defined by the simple formula R = 3.0 M, where r is the 

radius in kilometers, and M is the mass in multiples of the sun's mass (1 M = 2.0 x 10
30

 
kilograms). Shade-in the region of the LogLog plot that represents the condition that no 
object of a given mass may have a radius smaller than that of a black hole. 
 
Problem 4 -  The lowest density achievable in our universe is set by the density of the 

cosmic fireball radiation field of 4 x 10
-31

 kg/m
3
. Draw a line that identifies the locus of 

objects with this density, and shade the region that excludes densities lower than this. 

 Object R 
(meters) 

M  
(kg) 

1 You 2.0 60 
2 Mosquito 2x10-3 2x10-6 
3 Proton 2x10-15 2x10-27 
4 Electron 4x10-18 1x10-30 
5 Z boson 1x10-18 2x10-25 
6 Earth 6x106 6x1024 
7 Sun 1x109 2x1030 
8 Jupiter 4x108 2x1027 
9 Betelgeuse 8x1011 6x1031 
10 Milky Way galaxy 1x1021 5x1041 
11 Uranium atom 2x10-14 4x10-25 
12 Solar system 1x1013 2x1030 
13 Ameba 6x10-5 1x10-12 
14 100-watt bulb 5x10-2 5x10-2 
15 Sirius B white dwarf. 6x106 2x1030 
16 Orion nebula 3x1018 2x1034 
17 Neutron star 4x104 4x1030 
18 Binary star system 1x1013 4x1030 
19 Globular cluster M13 1x1018 2x1035 
20 Cluster of galaxies 5x1023 5x1044 
21 Entire visible universe 2x1026 2x1054 
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Answer Key 8.4.4 
  The figure below shows the various items plotted, and excluded regions cross-

hatched. Students may color or shade-in the permitted region.  This wedge represents 
all of the known objects and systems in our universe; a domain that spans a range of 

85 orders of magnitude (10
85

) in mass and  47 orders of magnitude (10
47

) in size! 
. 
Inquiry: Can you or your students  come up with more examples of objects or system 
that occupy some of the seemingly  'barren'  regions of the permitted area? 
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Properties of Logarithms                                      8.5.1 

 Astronomers measure the 
brightness of a star in the sky using a 
magnitude scale. On this scale, the 
brightest objects have the SMALLEST 
number and the faintest objects have the 
LARGEST numbers. It’s a ‘backwards’ 
scale that astronomers inherited from the 
ancient Greek astronomer Hipparchus.  
 
The image to the left taken by the Hubble 
Space Telescope of individual stars in the 
galaxy NGC-300.  The faintest stars are of 
magnitude +20.0. 
 
 
1 – At its brightest, the planet Venus has a 
magnitude of -4.6. The faintest star you 
can see with your eye has a magnitude of 
+7.2. How much brighter is Venus than the 
faintest visible star? 
 
2 – The full moon has a magnitude of -
12.6 while the brightness of the sun is 
about -26.7. How many magnitudes fainter 
is the moon than the sun? 
 
3 – The faintest stars seen by astronomers 
with the Hubble Space Telescope is +30.0. 
How much fainter are these stars than the 
sun? 
 
4 -  Jupiter has a magnitude of –2.7 while 
its satellite, Callisto, has a magnitude of 
+5.7. How much fainter is the Callisto than 
Jupiter? 
 
5 – Each step by 1 unit in magnitude 
equals a brightness change of 2.5 times. A 
star with a magnitude of +5.0 is 2.5 times 
fainter than a star with a magnitude of 
+4.0. Two stars that differ by 5.0 
magnitudes are 100-times different in 
brightness. If Venus was observed to have 
a magnitude of +3.0 and the full moon had 
a magnitude of -12.0, how much brighter 
was the moon than Venus? 
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Answer Key 
 
1 – At its brightest, the planet Venus has a magnitude of -4.6. The faintest star you can 
see with your eye has a magnitude of +7.2. How much brighter is Venus than the 
faintest visible star? 
 
Answer:   +7.2 – (-4.6) =  +7.2 + 4.6 =  +11.8 magnitudes 
 
 
 
2 – The full moon has a magnitude of -12.6 while the brightness of the sun is  
about -26.7. How many magnitudes fainter is the moon than the sun? 
 
Answer:   -12.6 – (-26.7) = -12.6 + 26.7 =  +14.1 magnitudes fainter. 
  

 
 
3 – The faintest stars seen by astronomers with the Hubble Space Telescope is +30.0. 
How much fainter are these stars than the sun? 
 
Answer:   +30.0 – (-26.7) = +30.0 + 26.7 = +56.7 magnitudes fainter. 
 
 
 
4 -  Jupiter has a magnitude of –2.7 while its satellite, Callisto, has a magnitude of 
+5.7. How much fainter is the Callisto than Jupiter? 
 
Answer:  +5.7 – (-2.7) = +5.7 + 2.7 = +8.4 magnitudes fainter than Jupiter. 
 
 
 
5 – Each step by 1 unit in magnitude equals a brightness change of 2.5 times. A star 
with a magnitude of +5.0 is 2.5 times fainter than a star with a magnitude of +4.0. Two 
stars that differ by 5.0 magnitudes are 100-times different in brightness. If Venus was 
observed to have a magnitude of +3.0 and the full moon had a magnitude of -12.0, 
how much brighter was the moon than Venus? 
 
Answer:  The magnitude difference between them is +15.0, since every 5 magnitudes 
is a factor of 100 fainter, +15.0  is equivalent to 100x100x100 = 1 million times, so the 
moon is 1 million times brighter than Venus. 

8.5.1 



8.6.1 Solving exponential and logarithmic equations 

 

 Stars come in all different 
brightnesses and distances, which 
makes the sky very complicated in 
appearance.   
 Two quantities determine 
how bright a star will appear in the 
sky. The first is its distance, and 
the second is the brilliance or 
‘luminosity’ of the star, measured 
in watts. 
 If you take a 100-watt bulb 
and place it 10 meters away from 
you, the amount of light you see 
will look the same as a 1-watt bulb  
only 1 meter away. 

 For stars, the apparent brightness or ‘magnitude’ of a star depends on its 
distance and its luminosity, also called its absolute magnitude. What you see in 
the sky is the apparent brightness of a star. The actual amount of light produced 
by the surface of the star is its absolute magnitude.  A simple equation, basic to 
all astronomy, relates the star’s distance in parsecs, D, apparent magnitude, m, 
and absolute magnitude, M as follows: 
 
                                           M = m + 5 - 5log(D) 
 
 
Problem 1 – The star Sirius has an apparent magnitude of m = -1.5, while Polaris 
has an apparent magnitude of m = +2.3,  if the absolute magnitude of Sirius is M 
=  +1.4 and Polaris is M = -4.6, what are the distances to these two stars? 
 
 
 
Problem 2 – An astronomer determined the distance to the red supergiant 
Betelgeuse as 200 parsecs. If its apparent magnitude is m = +0.8, what is the 
absolute magnitude of this star? 
 
 
 
Problem 3 –  As seen in the sky, Regulus and Deneb have exactly the same 
apparent magnitudes of m = +1.3. If the distance to Deneb is 500 parcecs, and 
the absolute magnitude of Regulus is  1/9 that of Deneb, what is the distance to 
Regulus? 
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Answer Key 8.6.1 
 Problem 1 – The star Sirius has an apparent magnitude of m = -1.5, while Polaris has 

an apparent magnitude of m = +2.3,  if the absolute magnitude of Sirius is M =  +1.4 
and Polaris is M = -4.6, what are the distances to these two stars? 
 
Answer: 
 
Sirius:     +1.4 = -1.5 + 5 - 5logD        
                Log D =  2.9/5 
                LogD = 0.42                 so the distance to Sirius is D =  2.6  parsecs 
 
Polaris:    -4.6 = +1.4 + 5 – 5LogD 
                LogD =  +11.0/5 
                LogD = +2.2               so the distance to Polaris is D = 158 parsecs. 
 
 
 
 
 
Problem 2 – An astronomer determined the distance to the red supergiant Betelgeuse 
as 200 parsecs. If its apparent magnitude is m = +0.8, what is the absolute magnitude 
of this star? 
 
Answer:  M = m + 5 - 5log(D) 
                   = +0.8 + 5 – 5 log(200) 
                   = +0.8 + 5 – 5(2.3)                    so for Betelgeuse  M =  - 4.2 
       
 
 
Problem 3 –  As seen in the sky, Regulus and Deneb have exactly the same apparent 
magnitudes of m = +1.3. If the distance to Deneb is 500 parcecs, and the absolute 
magnitude of Regulus is  1/9 that of Deneb, what is the distance to Regulus? 
      
Answer: First find the absolute magnitude, M, for Deneb, then solve for D in the 
equation for Regulus: 
 
 
Deneb:   m = +1.3  and    D = 500 parsecs  then       
              M = +1.3 + 5 - 5log(500)   so M =  -7.2 
 
 
Regulus:   m =  +1.3   and   
                 M = 1/9 (-7.2) =  -0.8    then 
               -0.8 = +1.3 + 5 – 5logD 
                LogD =  +1.4                                  so  for Regulus,  D = 25 parsecs.   
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8.6.2 Solving exponential and logarithmic equations 

 

 Stars come in all different 
brightnesses and distances, which 
makes the sky very complicated in 
appearance.   
 Astronomers use a 
logarithmic scale to determine the 
brightness of stars as they appear 
in the sky. Called ‘apparent 
magnitude’ , this scale is a 
historical holdover from ancient 
star catalogs that ranked stars by 
their brightness. A First Ranked 
star with m = +1.0 is brighter than 
a Second Ranked star with m = 
+2.0 and so on. 

 The stellar magnitude scale, m, can be defined by a simple base-10 
formula that defines the brightness of a star, B(m) as  
 

    B(m) =  10
-0.4m

 
 
For example, Polaris the ‘North Star’ has an apparent magnitude of m = +2.3 and 
a brightness of B(+2.3) = 10-0.4(2.3)  or B(2.3) = 0.12 on this scale.   The star 
Sirius has an apparent magnitude of m = -1.4 and a brightness of B(-1.4) = 3.63.  
 
 
Problem 1 – An astronomer measures the light from two identical stars in a 
binary system that are close together. If the brightness of the entire binary system 
is 0.008, what is the apparent magnitude of each of the individual stars? 
 
 
 
 
Problem 2 -  An astronomer measures the magnitudes of two stars and finds 
them to be exactly a factor of 100 in brightness. What is the apparent magnitude 
difference between these two stars? 
 
 
 
Problem 3 -  The Sun has an apparent magnitude of – 26.5 while the faintest star 
that can be seen by the Hubble Space Telescope has an apparent magnitude of 
+31. By what factor is the Sun brighter than the faintest star seen by Hubble? 
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Answer Key 8.6.2 
 Problem 1 – An astronomer measures the light from two identical stars in a binary 

system that are close together. If the brightness of the entire binary system is 0.008, 
what is the apparent magnitude of each of the individual stars? 
 
Answer:  Because the stars are identical, the brightness of each star is just B = 0.008/2 
= 0.004. Then solve 
 
B(m) = 0.004 to determine m for each of the stars individually. 

0.004 = 10
-0.4m

 
Log(0.004) = -0.4m 
-2.4 = -0.4m 
 
So the apparent magnitude of each star, individually, is m = +6.0 
 
 
Problem 2 -  An astronomer measures the magnitudes of two stars and finds them to 
be exactly a factor of 1/100 in brightness. What is the apparent magnitude difference 
between these two stars? 
 
Answer:    B(m) = 1/100      

             so  1/100 = 10
-0.4m

 
                  Log(1/100) = -0.4m            
                           -2 = -0.4m 
                           m =  5                      
The stars differ in apparent magnitude by  exactly 5.0 magnitudes.   
 
 
Problem 3 -  The Sun has an apparent magnitude of – 26.5 while the faintest star that 
can be seen by the Hubble Space Telescope has an apparent magnitude of +31. By 
what factor is the Sun brighter than the faintest star seen by Hubble? 
 
Answer: 
 

B(-26.5)  =  10
-0.4(-26.5) 

   so B(-26.5) =  4.0 x 10
10

  
 

B(+31) =  10
-0.4(+31) 

   so B(+31) =  4.0 x 10
-13 

 

So     B(sun)/B(star) =   4.0 x 10
10  

/ 4.0 x 10
-13  

  or a factor of  10
23

 times. 
 
In other words, the Sun is 100,000,000,000,000,000,000,000 times brighter than the 
faintest stars seen by the Hubble! 
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8.7.1 Modeling Power Functions 

 Astronomers have detected over 500 
bodies orbiting the sun well beyond the orbit 
of Neptune. Among these 'Trans-Neptunian 
Objects (TNOs) are a growing number that 
rival Pluto in size. This caused astronomers to 
rethink how they should define the term 
'planet'.  
 In 2006 Pluto was demoted from a 
planet to a dwarf planet, joining the large 
asteroid Ceres in that new group. Several 
other TNOs also joined that group, which now 
includes five bodies shown highlighted in the 
table. A number of other large objects, called 
Plutoids, are also listed.   
 
Problem 1 - From the tabulated data, graph 
the distance as a function of period on a 
calculator or Excel spreadsheet. What is the 
best-fit: A) Polynomial function? B) Power-law 
function?   
 
Problem 2 - Which of the two possibilities can 
be eliminated because it gives unphysical 
answers?   
 
Problem 3 - Using your best-fit model, what 
would you predict for the periods of the TNOs 
in the table? 
 
  
  

Object Distance 
(AU) 

Period 
(years) 

Mercury 0.4 0.24 
Venus 0.7 0.61 
Earth 1.0 1.0 
Mars 1.5 1.88 
Ceres 2.8 4.6 
Jupiter 5.2 11.9 
Saturn 9.5 29.5 
Uranus 19.2 84.0 

Neptune 30.1 164.8 
Pluto 39.4 247.7 
Ixion 39.7  
Huya 39.8  

Varuna 42.9  
Haumea 43.3 285 
Quaoar 43.6  

Makemake 45.8 310 
Eris 67.7 557 

1996-TL66 82.9  
Sedna 486.0  
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Answer Key 8.7.1 
 Problem 1 - From the tabulated data, graph the distance as a function of period on a 

calculator or Excel spreadsheet. What is the best-fit: 

A) Polynomial function?   The N=3 polynomial  D(x) = -0.0005x
3
 + 0.1239x

2
 +2.24x  - 1.7 

B) Power-law function?   The N=1.5 powerlaw:    D(x) = 1.0x
1.5

 
 
 
Problem 2 - Which of the two possibilities can be eliminated because it gives unphysical 
answers?   The two predictions are shown in the table: 
 

Object Distance Period N=3 N=1.5 
Mercury 0.4 0.24 -0.79 0.25 
Venus 0.7 0.61 -0.08 0.59 
Earth 1 1 0.66 1.00 
Mars 1.5 1.88 1.93 1.84 
Ceres 2.8 4.6 5.53 4.69 
Jupiter 5.2 11.9 13.22 11.86 
Saturn 9.5 29.5 30.33 29.28 
Uranus 19.2 84 83.44 84.13 

Neptune  30.1 164.8 164.34 165.14 
Pluto 39.4 247.7 248.31 247.31 
Ixion 39.7   251.21 250.14 
Huya 39.8   252.19 251.09 

Varuna 42.9   282.94 280.99 
Haumea 43.3 285 286.99 284.93 
Quaoar 43.6   290.05 287.89 

Makemake 45.8 310 312.75 309.95 
Eris 67.7 557 562.67 557.04 

1996-TL66 82.9   750.62 754.80 
Sedna 486   -27044.01 10714.07 

 
 
Answer: The N=3 polynomial gives negative periods for Mercury, Venus and Sedna, and poor 
answers for Earth, Mars, Ceres and Jupiter compared to the N=3/2 power-law fit.  The N=3/2 
power-law fit is the result of Kepler's Third Law for planetary motion which states that the cube 
of the distance is proportional to the square of the period so that when all periods and 

distances are scaled to Earth's orbit, Period = Distance
3/2

 
 
Problem 3 -  See the table above for shaded entries 
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8.7.2 Modeling with Exponential Functions 

 Because of friction with 
Earth's atmosphere, satellites in Low 
Earth Orbit below 600 kilometers, 
experience a gradual loss of orbit 
altitude over time. The lower the 
orbit, the higher is the rate of altitude 
loss, and it can be approximated by 
the formula: 
            

 
0.025( 150)( ) 0.012 hT h De 

 
where h is the altitude of the orbit in 
kilometers above Earth's surface, 
and T(h) is in days until re-entry.  

The variable, D, is called the ballistic coefficient and is a measure of how massive 
the satellite is compared to the surface area facing its direction of motion (in 

kilograms/meter
2
).  

 
Problem 1 - Graph this exponential function for a domain of satellite orbits given by 

150 kilometers  <  h  <  600 kilometers for D = 50 kg/m
2
 and D = 200 kg/m

2
. 

 
 
 
Problem 2 - Graph this function for the same domain and values for D as a log-
linear plot: h vs log(T). 
 
 
 

Problem 3 - Suppose that the Hubble Space Telescope, D=11 kg/m
2
, is located in 

an orbit with an altitude of 575 kilometers following the 're-boost' provided by the 
Space Shuttle crew during the last Servicing Mission in 2009. The Space Shuttle 
raised the orbit of HST by 10 kilometers. A) By what year would HST have re-
entered had this re-boost not occurred?  B) About when will the HST re-enter the 
atmosphere following this Servicing Mission? 
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Answer Key 8.7.2 
 Problem 1 - Graph this exponential function for a domain of satellite orbits given by 

150 kilometers  <  h  <  600 kilometers for D = 50 kg/m
2
 and D = 200 kg/m

2
 . 
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Problem 2 - Graph this function for the same domain and values for D as a log-linear 
plot: h vs log(T). 
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Problem 3 - Answer:   
 
A) Before the re-boost, the altitude was 575 - 10 km = 565 km, in 2009, so T = 
0.012(11)e(0.025 (565-150)) = 4,230 days or  11 years from 2009 so the reentry would 
have occurred around 2020. 
 
 B) After the re-boost, the altitude was 575 km in 2009, so T = 0.012(11)e(0.025 (575-
150)) = 5,432 days or  15 years from 2009 so the reentry occurs around 2024. 
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8.7.3 Modeling with Exponential Functions 

Imagine that the atmosphere 
was a thick blanket of gas. As you 
look straight up, you can see the 
stars, but as you look towards the 
horizon, the starts fade away 
completely.  
 A very simple geometric 
below, shows just how this happens. 
The parallel lines represent the top 
and bottom of the atmosphere. H is 
the thickness of the atmosphere 
'straight up' towards the Zenith, and 
L is the length of a sight line through 
the atmosphere tilted at an angle, 
theta, from the Zenith direction. 

Problem 1 - What is the relationship between the zenith angle, , and the elevation 
angle, , where H is perpendicular to the parallel lines? 
 
Problem 2 - The thickness of the atmosphere is assumed to be fixed. What is the 
length, L, in terms of H and ? 
 
 
Problem 3 - What is the length, L, in terms of H and the elevation angle ? 
 
Problem 4 - For what angles,  and , will the path through the atmosphere equal 
2H? 
 

Problem 5 - The brightness of a star is given by 0( )
L

bI L I e


   where I0 is the 

brightness of the star in the zenith direction, and b is the path length through the 

atmosphere for which the brightness of the star will dim by a factor of exactly e
-1

  = 

0.37. If b =  H, and I0 = 2,  graph the function I(L) for the domain L:[H, 3H] and state 
its range. 
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8.7.3 Answer Key 

 Problem 1 - Answer:    = 90 - . 
 
Problem 2 -   Answer:   Since L and H are the sides of a right triangle, H = Lcos() so  
               H 
L = ----------------   =   H Secant() 
       Cos() 
 
 
Problem 3 -  Answer: H = L sin()   so 
 
               H 
L = ----------------   =   H Cosecant() 
       Sin() 
 
 
Problem 4 - Answer:    2H = H Secant()    so  
Secant() = 2  so  
Cos( = 0.5 and  = 60 degrees.  
 
Since  = 90 - ,  
         = 90 - 60,  
=30 degrees.   
 
So, for an elevation angle of =30 degrees above the horizon, the path through the 
atmosphere is twice the zenith distance, H. 
 
 
Problem 5 -  Answer: For values in this domain, the exponential term, -L/b will be from 
-1 to -3 so the range of F(L) will be from  0.37(2)= 0.74 to 0.05(2)= 0.10  so I: [0.10, 
0.74] and the graph is shown below. 
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8.7.5 Modeling with Power Functions 

 Gamma-ray bursts, first spotted in the 
1960's, occur about once every day, and are 
believed to be the dying explosions from massive 
stars being swallowed whole by black holes that 
form in their cores, hours before the explosion. The 
amount of energy released is greater than entire 
galaxies of starlight.  
   This burst began January 16, 2005, and 
lasted 529,000 seconds as seen by the Swift 
satellite's X-ray telescope. The data for GRB 
060116 is given in the table to the left. This source, 
located in the constellation Orion, but is over 10 
billion light years behind the Orion Nebula! 

Time (sec) Log(Brightness) 

(erg/sec/cm
2
) 

200 -10.3 
500 -10.7 

1,000 -11.0 
6,000 -11.7 

10,000 -12.0 
25,000 -12.3 

100,000 -13.0 
500,000 -13.8 

Problem 1 - Plot the tabulated data on a graph with x = Log(seconds) and y = 
Log(Brightness).  
 
 
 
 
 
Problem 2 - What is the best-fit linear equation that characterizes the data over 
the domain x: [2.0, 5.0]?   
 
 
 
 
 
Problem 3 - What is the equivalent power-law function that represents the linear 
fit to the data?  
 
 
 
 
 
Problem 4 - If the Gamma-ray Burst continues to decline at this rate, what will be 
the brightness of the source by A) February 16, 2005? B) January 16, 2006?  
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Answer Key 8.7.5 
 

Problem 1 - Answer: See figure below. 
 
 
 
Problem 2 - Answer: See figure below with   y = -1.0x - 7.93 
 
 
 
Problem 3 - Answer:  LogB = -1.0Logt - 7.93 so  10LogB = 10(-1.0Logt - 7.93) or B(t) 

= 1.17x10
-8

 t
-1.0

 
 
 
 
Problem 4 - Answer: A) First calculate the number of seconds elapsed between 
January 16 and February 16 which equals 31 days or 31 x (24 hrs) x (3600 sec/hr) = 

2,678,400. Then B(t) = 1.17x10
-8

 (2678400)
-1.0

 and so B(t) = 4.37 x 10
-15

 

ergs/sec/cm
2
.  B) The elapsed time is 365 days or 3.1 x 10

7
 seconds so B(t) = 

1.17x10
-8

 (3.1x10
7
)
-1.0

 and so B(t) = 3.77 x 10
-16

 ergs/sec/cm
2
.    

 
 
Note: Research reported by En-Wei Liang in October 24, 2009 article 'A comprehensive 
analysis of Swift/XRT data' (Astro-ph.HE: arXive:0902.3504v2). The study of over 400 GRBs 
found 19 that had power-law light curves out to 100,000 seconds and more. 
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8.8.1 Logistics Growth Functions 

 The growth of planets from the 
limited materials in the orbiting disk of dust 
and gas can be approximated by a logistics 
function.  
 Because of the way in which orbiting 
material moves, material outside the orbit 
of the planet travels more slowly than 
material inside the planet’s orbit. 
Eventually, the forming planet consumes 
the material along its orbit and forms an 
ever-expanding gap. Eventually the 
process stops when no more gas exists to 
be captured. 

 The growth of Earth can be approximated by the 'accretion'  function 
 

                            
5

6000
( )

1 400
tM t

e





   

 

where its mass is in units of 10
21

 kilograms and the elapsed time, t, is in millions of 
years. 
 
 
Problem 1 – Graph the accretion function over the domain t:[0,70] 
 
 
 
Problem 2 –  What is the asymptotic (limiting) mass of Earth in kilograms? 
 
 
 
Problem 3 - At what mass, in kilograms, does Earth begin the accretion process as a 
planetoid? 
 
 
Problem 4 -  How long does the function predict that it took Earth to reach 95% of its 
final mass? 
 
 
Problem 5 -  At what rate is the mass increasing near a time of 30 million years in 

units of 10
18

 tons per million years? 
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Answer Key 8.8.1 
 Problem 1 – Answer: 
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Problem 2 –  Answer: 6000 x 10
18

 tons or 6.0 x 10
24

 kg. 
 
 

Problem 3 - Answer: At t=0  M(0) = 6000 / (1 + 400)   so M = 1.49 x 10
22

  kilograms 
 
 
Problem 4 -   Answer:    M(t) = 0.95x6000 = 5700 so 
 

5700 = 6000 / (1 + 400 e
(-t/5)

  )  solve for t. 

0.053 = 400 e
(-t/5)

 

ln(1.31 x 10
-4

) = -t/5   so  t = 45 million years. 
 
 
Problem 5 -  At what rate is the mass increasing near a time of 30 million years in 

units of 10
18

 tons per million years? 
 
Answer: Evaluate M(t) for two times near 30 million years: 

M(25) = 1624 x 10
18

 tons 

M(35) =  4396 x 10
18

 tons. 
 
The slope = rate of change  
                 =  (M(35)-M(25)/10 million years 

                 = 2.78 x 10
20

 tons/million years 
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