
  Using the Properties of Exponents 6.1.1 
 
 
 

 Astronomers rely on scientific notation in order to 
work with very large and small measurements.  The rules 
for using this notation are pretty straight-forward, and are 
commonly taught  in most 7th-grade math classes as part 
of the National Education Standards for Mathematics. 
 The following problems involve the conversion of 
decimal numbers into SN form, and are taken from 
common astronomical applications and quantities. 

 

1)  Length of  a year.                     31,560,000.0   seconds 
 
 
2)  Speed of light:                   299,792.4 kilometers/sec 
 
 
3) Mass of the sun:                   1,989,000,000,000,000,000,000,000,000,000,000   grams 
 
 
4) Mass of Earth:                 5,974,000,000,000,000,000,000,000 kilograms 
 
 
5) One light-year :                       9,460,500,000,000  kilometers 
 
 
6) Power output of sun :               382,700,000,000,000,000,000,000,000  watts 
 
 
7) Mass of an electron:                    0.00000000000000000000000000000091096 kilograms 
 
 
8) Energy equivalent of one electron-Volt :                            0.00000000000000000016022 joules 
 
 
9) Ratio of proton to electron mass:                                                                                      1,836.2 
 
 
10) Planck's Constant:                           0.000000000000000000000000006626068  ergs seconds 
 
 
11) Radius of hydrogen atom :                                                        0.00000000529177 centimeters 
 
 
12) Radius of Earth's orbit:                                                            14,959,789,200,000  centimeters 
 
 
13)  Smallest unit of physical distance:   0.0000000000000000000000000000000016  centimeters    
 
 
14) Diameter of Visible Universe:              26,000,000,000,000,000,000,000,000,000  centimeters  
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6.1.1 
 
 
 
 
 
 
 

Answer Key: 
 
1)  Length of  a year.                     31,560,000.0   seconds 

                                   Answer:   3.156 x 10
7 

seconds 
 
2)  Speed of light:                  299,792.4 kilometers/sec 

   Answer:   2.997924 x 10
5
 km/sec 

 
3) Mass of the sun:                   1,989,000,000,000,000,000,000,000,000,000,000   grams 

                                   Answer:  1.989 x 10
33

 grams 
  
4) Mass of Earth:                 5,974,000,000,000,000,000,000,000 kilograms 

                                   Answer:  5.974 x 10
24

 kg 
 
5) One light-year :                       9,460,500,000,000  kilometers 

                                   Answer:   9.4605 x 10
12

 km 
 
6) Power output of sun :               382,700,000,000,000,000,000,000,000  watts 

   Answer:   3.827 x 10
26

 watts 
 
7) Mass of an electron:                    0.00000000000000000000000000000091096 kilograms 

                                   Answer: 9.1096 x 10
-31

 kg 
 
8) Energy equivalent of one electron-Volt :                            0.00000000000000000016022 joules 

   Answer:  1.6022 x 10
-19

 Joules 
 
9) Ratio of proton to electron mass:                                                                                      1,836.2 

   Answer;  1.8362 x 10
3
 

 
10) Planck's Constant:                           0.000000000000000000000000006626068  ergs seconds 

                                   Answer: 6.626068 x 10
-27

 ergs seconds 
 
11) Radius of hydrogen atom :                                                        0.00000000529177 centimeters 

   Answer: 5.29177 x 10
-9

 cm 
 
12) Radius of Earth's orbit:                                                            14,959,789,200,000  centimeters 

   Answer:  1.49597892 x 10
13

 cm 
 
13)  Smallest unit of physical distance:   0.0000000000000000000000000000000016  centimeters   

                                   Answer: 1.6 x 10
-33

 cm 
 
14) Diameter of Visible Universe:              26,000,000,000,000,000,000,000,000,000  centimeters  

    Answer; 2.6 x 10
28

 cm 
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6.1.2   Using Properties of Exponents 

 
 
 

 Astronomers rely on scientific notation in 
order to work with 'big' things in the universe.  The 
rules for using this notation are pretty straight-
forward, and are commonly taught in most 7th-
grade math classes as part of the National 
Education Standards for Mathematics. 
 The following problems involve the addition 
and subtraction of numbers expressed in Scientific 
Notation. For example: 
 

1.34 x 10
8 + 4.5 x 10

6
  =  134.0  x 10

6
 + 4.5 x 10

6

     =  (134.0 + 4.5) x 10
6

     = 138.5 x 10
6

      = 1.385 x 10
8 

1)       1.34 x 10
14

   +   1.3 x 10
12

    =    
 
 

2)       9.7821 x 10
-17

   +   3.14 x 10
-18  

 =  
 
 

3)       4.29754 x 10
3
   +   1.34 x 10

2 
  =   

 
 

4)       7.523 x 10
25

    -    6.32 x 10
22

   +   1.34 x 10
24

    =   
 
 

5)       6.5 x 10
-67

    -    3.1 x 10
-65

   =   
 
 

6)       3.872 x 10
11

   -    2.874 x 10
13

   =   
 
 

7)       8.713 x 10
-15

   +   8.713 x 10
-17

   =   
 
 

8)       1.245 x 10
2
   -   5.1 x 10

-1
   =   

 
 

9)       3.64567 x 10
137

   -   4.305 x 10
135 

  +   1.856 x 10
136

   =   
 
 

10)      1.765 x 10
4
   -   3.492 x 10

2
   +   3.159 x 10

-1
   =    
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6.1.2 
 
 

Answer  Key: 
 
 
 

1)       1.34 x 10
14

   +   1.3 x 10
12

    =    (134 + 1.3) x 10
12

  =   1.353 x 10
14

 
 
 

2)       9.7821 x 10
-17

   +   3.14 x 10
-18  

 =  (97.821 + 3.14) x 10
-18

 =    1.00961 x 10
-16

 
 
 

3)       4.29754 x 10
3
   +   1.34 x 10

2 
  =  (42.9754 + 1.34) x 10

2
 =  4.43154 x 10

3

 
 
 

4)       7.523 x 10
25

  -   6.32 x 10
22

  +  1.34 x 10
24

   =  (7523 - 6.32 + 134) x 10
22

 = 7.65068 x 10
25

 
 
 

5)       6.5 x 10
-67

    -    3.1 x 10
-65

   =  (6.5 - 310) x 10
-67

 =  -3.035 x 10
-65

 
 
 

6)       3.872 x 10
11

   -    2.874 x 10
13

   =  (3.872 - 287.4) x 10
11

 = 2.83528 x 10
13

 
 
 

7)       8.713 x 10
-15

   +   8.713 x 10
-17

   =  (871.3 + 8.713) x 10
-17

 = 8.80013 x 10
-15

 
 
 

8)       1.245 x 10
2
   -   5.1 x 10

-1
   =  (1245.0 - 5.1) x 10

-1
 = 1.2399 x 10

2
   

 
 
 

9)       3.64567 x 10
137

   -   4.305 x 10
135 

  +   1.856 x 10
136

   =  (364.567 - 4.305 + 18.56) x 10
135

 = 

3.78822 x 10
137

 
 
 

10)      1.765 x 10
4
   -   3.492 x 10

2
   +   3.159 x 10

-1
   =   (17650.0 - 3492 + 3.159) x 10

-1
 = 

1.4161159 x 10
4
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  Using the Properties of Exponents                               6.1.3 

 
 
 

 The following problems involve the 
multiplication and division of numbers expressed in 
Scientific Notation. Report all answers to two 
significant figures. For example: 
 

1.34 x 10
8 x  4.5 x 10

6
  =  (1.34 x 4.5) x 10

(8+6)

      =   6.03 x 10
14

To 2 significant figures this becomes…  6.0 x 10
14

 
 

3.45 x 10
-5

  /  2.1 x 10
6
  =  ( 3.45/2.1) x 10 

(-5 - (6))

       =   1.643 x 10
-11 

To 2 significant figures this becomes…  1.6 x 10
14
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1)  Number of nuclear particles in the sun:               2.0 x 10
33

 grams  / 1.7 x 10
-24 

 grams/particle 
 
 

2)  Number of stars in the visible universe:                  2.0 x 10
11

 stars/galaxy x 8.0 x 10
10

 galaxies 
 
 

3) Age of universe in seconds:                                    1.4 x 10
10

  years x 3.156 x 10
7
 seconds/year 

 
 

4) Number of electron orbits in one year:   (3.1 x 10
7
 seconds/year)  /  (2.4 x 10

-24
 seconds/orbit) 

 
 

5) Energy carried by visible light:                                   (6.6 x 10
-27

 ergs/cycle)  x 5 x 10
14

 cycles 
 
 

6)  Lengthening of Earth day in 1 billion years:                     (1.0 x 10
9
 years) x 1.5 x 10

-5
 sec/year 

 
 

7) Tons of TNT needed to make crater 100 km across:         4.0 x 10
13

 x (1.0 x 10
15

)/(4.2 x 10
16

) 
 
 

8) Average density of the Sun:                                                   1.9 x 10
33 

grams / 1.4 x 10
33

 cm
3

 
 

9) Number of sun-like stars within 300 light years:   (2.0 x 10
-3  

stars )
 
x 4.0 x 10

6  
cubic light-yrs 

 
 

10) Density of the Orion Nebula:                    (3.0 x 10
2
 x 2.0 x 10

33   
grams)

 
/ (5.4 x 10

56
  cm

3
 ) 



6.1.3 
 
 

Answer  Key: 
 
 

1)  Number of nuclear particles in the sun:               2.0 x 10
33

 grams  / 1.7 x 10
-24 

 grams/particle 
 

   1.2 x 10
57

 particles (protons and neutrons) 
 

2)  Number of stars in the visible universe:                  2.0 x 10
11

 stars/galaxy x 8.0 x 10
10

 galaxies 
 

   1.6 x 10
22

 stars 
 

3) Age of universe in seconds:                                     1.4 x 10
10

  years x 3.156 x 10
7
 seconds/year 

 

   4.4 x 10
17 

 seconds 

4) Number of electron orbits in one year:   (3.1 x 10
7
 seconds/year)  /  (2.4 x 10

-24
 seconds/orbit) 

 

   1.3 x 10
31

 orbits of the electron around the nucleus 
 

5) Energy carried by visible light:                                   (6.6 x 10
-27

 ergs/cycle)  x 5 x 10
14

 cycles 
 

   3.3 x 10
-12

 ergs 

6)  Lengthening of Earth day in 1 billion years:                     (1.0 x 10
9
 years) x 1.5 x 10

-5
 sec/year 

 

   1.5 x 10
4 

seconds or  4.2 hours longer 
 

7) Tons of TNT needed to make crater 100 km across:           4.0 x 10
13

 x (1.0 x 10
15

)/(4.2 x 10
16

) 
 

   9.5 x 10
11 

 tons  of TNT   (equals 950,000 hydrogen bombs!) 
  

8) Average density of the Sun:                                                   1.9 x 10
33 

grams / 1.4 x 10
33

 cm
3

 

      1.4    grams/cm
3

 

9) Number of sun-like stars within 300 light years:   (2.0 x 10
-3  

stars )
 
x 4.0 x 10

6  
cubic light-yrs 

 

   8.0 x 10
3
 stars like the sun. 

 

10) Density of the Orion Nebula:                    (3.0 x 10
2
 x 2.0 x 10

33   
grams)

 
/ (5.4 x 10

56
  cm

3
 ) 

 

   1.1 x 10
-21

   grams/cm
3
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6.2.1 Evaluating and Graphing Polynomials 

 In 7 billion years, our sun will 
become a red giant, shedding its 
atmosphere as a planetary nebula, and 
leaving behind its dense core. This 
core, about the size of Earth, is what 
astronomers call a white dwarf, and 
lacking the ability to create heat 
through nuclear reactions, it will 
steadily cool and become fainter as a 
stellar remnant. 
 The luminosity, L, of the white 
dwarf sun has been mathematically 
modeled as a function of time, t, to give  

y = Log10L(t) and x = Log10t, where t 
is in units of years and L is in multiples 

of the current solar power (3.8 x 10
26

 
watts. The domain of the function is 
[+3.8, +10.5]. 

 
The Cat's Eye nebula (NGC 6543) imaged  
by the Hubble Space Telescope. At its center 
is a young white dwarf star located  11,000  
light years from Earth.  

5 4 3 2( ) 0.0026 0.1075 1.6895 12.742 45.396 59.024y x x x x x x     

Problem 1 - The domain over which y(x) applies as an approximation is given by 
the logarithmic interval [+3.8, +10.4]. Over what span of years does this 
correspond? 
 
 
 
 
Problem 2 - Graph y(x) over the stated domain using a graphing calculator or 
Excel spreadsheet. 
 
 
 
 
Problem 3 - For what values of t in years does y=0, and how is this physically 
interpreted in terms of L and t? [Hint: Use a calculator and make repeated 
guesses for x - called the Method of Successive Approximation] 
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6.2.1 Answer Key 

 Problem 1 - Answer: The text states that x = log10t where t is in years, so +3.8 = log10t, and t = 
10+3.8 years or 6,300 years.  The upper bound is then +10.4 = log10t, and t = 10+10.4 years or 2.5 
x 1010 years. So the span is from 6,300 years to 25 billion years. 
 
Problem 2 - Answer: See graph below. Use all significant figures in stated polynomial 
coefficients! 
 
Problem 3 - Answer:  Students can bracket this 'zero' by trial and error near x=6.4 (y=+0.05)  
or more accurately between x=6.45 ( y = +0.002) and x = 6.46 ( y = -0.007).    For x=6.4, t = 
10+6.4 = 2.5 million years and L = 100.0 = 1 Lsun, so after cooling for 6.4  million years, the 
white dwarf emits as much power, L, as the sun. 
 
 
 
Note to Teacher: This model is based on a detailed computer calculation by astronomers Iben and 
Tutukov in 1985, summarized in the research article 'Cooling of a White Dwarf' by D'Antona and 
Mazzitelli published in the Annual Reviews of Astronomy and Astrophysics, 1990, Volume 28, pages 
139-181 Table 2, columns1 and 2. 
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6.2.2 Evaluating and Graphing Polynomials 

 The search is on for an important theoretical particle called the Higgs Boson at 
the Large Hadron Collider, which began operation on November 23, 2009. The mass 
of the Higgs Boson is actually not constant, but depends on the amount of energy that 
is used to create it. This remarkable behavior can be described by the properties of 
the following equation: 

4 2 2 1

8
( ) 2 (1 )V x x T x     

 This equation describes the potential energy, V, stored in the field that 
creates the Higgs Boson. The variable x is the mass of the Higgs Boson, and T is 
the collision energy being used to create this particle. The Higgs field represents a 
new 'hyper-weak' force in Nature that is stronger than gravity, but weaker than the 
electromagnetic force. The Higgs Boson is the particle that transmits the Higgs 
field just as the photon is the particle that transmits the electromagnetic field. 
 
 
 
Problem 1 - Using a graphing calculator, what is the shape of the function V(x) over the 
domain [0,+1] for a collision energy of; A) T=0?  B) T=0.5?  C) T = 0.8 and D) T=1.0? 
 
 
 
 
 
 
 
 
Problem 2 - The mass of the Higgs Boson is defined by the location of the minimum of 
V(x) over the domain [0, +1]. If the mass, M in GeV, of the Higgs Boson is defined by M = 
300x, how does the predicted mass of the Higgs Boson change as the value of T 
increases from 0 to 1? 
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6.2.2 Answer Key 

 
Problem 1 - Answer: The function can be programmed on an Excel spreadsheet or a graphing 
calculator. Select x intervals of 0.05 and a graphing window of x: [0,1] y:[0,0.3] to obtain the 
plot to the left below. The curves from top to bottom are for T = 1, 0.8, 0.5 and 0 respectively.  
 
 
Problem 2 - Answer:  The minima of the curves can be found using a graphing calculator 
display or by interpolating from the spreadsheet calculations. The x values for T = 1 ,0.8, 0.5 
and 0 are  approximately 0, 0.3, 0.45 and 0.5 so the predicted Higgs Boson masses from the 
formula M = 300x will be  0 Gev, 90 GeV, 135 GeV and 150 GeV respectively.  
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6.2.3 Evaluating and Graphing Polynomials 

 An important concept in cosmology is that the 'empty space' between stars and 
galaxies is not really empty at all! Today, the amount of invisible energy hidden in 
space is just enough to be detected as Dark Energy, as astronomers measure the 
expansion speed of the universe. Soon after the Big Bang, this Dark Energy caused 
the universe to expand by huge amounts in less than a second. Cosmologists call this 
early period of the Big Bang Era, Cosmic Inflation. 
 
 An interesting property of this new 'dark energy' field, whose energy is 
represented by the function V(x), is that the shape of this function changes as the 
temperature of the universe changes. The result is that the way that this field, 
represented by the variable x, interacts with the other elementary particles in nature, 
changes. As this change from very high temperatures (T=1) to very low temperatures 
(T=0) occurs, the universe undergoes Cosmic Inflation! 

4 2 2 1

8
( ) 2 (1 )V x x T x     

Problem 1 - What are the domain and range of the function V(x)? 
 
Problem 2 - What is the axis of symmetry of V(x)? 
 
Problem 3 - Is V(x) an even or an odd function? 
 
Problem 4 - For T=0, what are the critical points of the function in the domain [-2, +2]? 
 
Problem 5 - Over the domain [0,+2] where are the local minima and maxima located for 
T=0? 
 
Problem 6 - Using a graphing calculator or an Excel spreadsheet, graph V(x) for the 
values T=0, 0.5, 0.8 and 1.0 over the domain [0,+1]. Tabulate the x-value of the local 
minimum as a function of T. In terms of its x location, what do you think happens to the 
end behavior of the minimum of V(x) in this domain as T increases? 
 
Problem 7 - What is the vacuum energy difference V = V(0) - V(1/2) during the Cosmic 
Inflation Era? 
 
Problem 8 -  The actual energy stored in 'empty space' given by V(x) has the physical 

units of  the density of energy in multiples of 10
35

 Joules per cubic meter.  What is the 
available energy density during the Cosmic Inflation Era in these physical units?  
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Answer Key 6.2.3 
 Problem 1 - Answer: Domain [- infinity, + infinity], Range [0,+infinity] 

 
Problem 2 - Answer: The y-axis:  x=0 
 
Problem 3 - Answer: It is an even function. 
 
Problem 4 - Answer: X = 0, X = -1/2 and x = +1/2 
 
Problem 5 - Answer: The local maximum is at x=0; the local minimum is at x = +1/2 
 
Problem 6 - Answer: See the graph below where the curves represent from top to 
bottom, T = 1.0, 0.8, 0.5 and 0.0. The tabulated minima are as follows: 

T X 
0.0 0.5 
0.5 0.45 
0.8 0.30 
1.0 0.0 

The end behavior, in the limit where T becomes very large, is that V(x) becomes a 
parabola with a vertex at (0, +1/8) 
 
Problem 7 - What is the vacuum energy difference V = V(0) - V(1/2) during the Cosmic 
Inflation Era? Answer:  V(0) = 1/8  V(1/2) = 0 so  V = 1/8. 
 
Problem 8 -  The actual energy stored in 'empty space' given by V(x) has the physical units of  

the density of energy in multiples of 10
35

 Joules per cubic meter.  What is the available energy 
density during the Cosmic Inflation Era in these physical units?  

Answer:   V = 1/8 x 10
35

 Joules/meter
3
 =  1.2 x 10

34
 Joules/meter

3
. 

 
Note to Teacher:  This enormous energy was available in every cubic meter of space that 
existed soon after the Big Bang, and the time it took the universe to change from the V(0) to 

V(1/2) state lasted only about 10
-35

 seconds. This was enough time for the universe to grow by 

a factor of 10
35

 times in its size during the Cosmic Inflation Era. 
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6.2.4 Evaluating and Graphing Polynomials 

 Detailed mathematical models of the 
interior of the sun are based on astronomical 
observations and our knowledge of the physics 
of stars.  These models allow us to explore 
many aspects of how the sun 'works' that are 
permanently hidden from view. 
 The Standard Model of the sun, created 
by astrophysicists during the last 50 years, 
allows us to investigate many separate 
properties. One of these is the density of the 
heated gas throughout the interior. The 
function below gives a best-fit formula, D(x) for 

the density (in grams/cm
3
) from the core (x=0) 

to the surface (x=1) and points in-between.  

4 3 2( ) 519 1630 1844 889 155D x x x x x      

 For example, at a radius 30% of the way to the surface, x = 0.3 and so 

D(x=0.3) =  14.5 grams/cm
3
. 

 
 
 
Problem 1 - What is the estimated core density of the sun? 
 
 
 
 
Problem 2 - To the nearest 1% of the radius of the sun, at what radius does the 
density of the sun fall to 50% of its core density at x=0? (Hint: Use a graphing 
calculator and estimate x to 0.01) 
 
 
 
 
Problem 3 - What is the estimated density of the sun near its surface at x=0.9 
using this polynomial approximation? 
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Answer Key 6.2.4 
 Problem 1 - Answer; At the core, x=0, do D(0) = 155 grams/cm3. 

 
 
 
 
 
Problem 2 - Answer: We want D(x) = 155/2 = 77.5 gm/cm3. Use a graphing calculator, or an 
Excell spreadsheet, to plot D(x) and slide the cursor along the curve until D(x) = 77.5 .Then 
read out the value of x.  The relevant portion of D(x) is shown in the table below: 
 

X D(x) 
0.08 94.87 
0.09 88.77 
0.1 82.96 

0.11 77.43 
0.12 72.16 
0.13 67.16 
0.14 62.41 

 
 
 
Problem 3 - Answer: At x=0.9  ( i.e. a distance of 90% of the radius of the sun from the 
center).   
D(0.9) = 519(0.9)4 - 1630(0.9)3 + 1844(0.9)2 -889(0.9) + 155 
D(0.9) = 340.516 - 1188.27 + 1493.64 - 800.10 + 155.00 
D(0.9) = 0.786 gm/cm3. 
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6.3.1 Multiplying and Dividing Polynomials 

  
The Ares-V rocket, now being 

developed by NASA, will weigh 3,700 tons at 
lift-off, and be able to ferry 75 tons of 
supplies, equipment and up to 4 astronauts 
to the moon. As a multi-purpose launch 
vehicle, it will also be able to launch 
complex, and very heavy, scientific payloads 
to Mars and beyond. To do this, the rockets 
on the Core Stage and Solid Rocket 
Boosters (SRBs) deliver a combined thrust 
of 47 million Newtons (11 million pounds). 
For the rocket, let's define: 
 
              T(t) =  thrust at time-t 
              m(t) = mass at time-t 
               a(t) = acceleration at time-t 
 
so that: 

              
( )
( )

( ) T t
m t

a t   

The launch takes 200 seconds. Suppose 
that over the time interval [0,200], T(t) and 
m(t) are approximately given as follows: 
 

             m x

3 2 4

2

( ) 8 16 47

( ) 35

T x x x x

x

   

   where t = 40x 
 
Where we have used a change of variable,   
from t to x to simplify the form of the 
equations.

Problem 1 - Graph the thrust curve T(x), and the mass curve m(x) and find all minima, maxima 
inflection points in the interval [0,5].  (You may use a graphing calculator, or Excel 
spreadsheet.) 
 
 
Problem 2 - Graph the acceleration curve a(x) and find all maxima, minima, inflection points in 
the interval [0,5].  (You may use a graphing calculator, or Excel spreadsheet.) 
 
 
 
Problem 3 - For what value of x will the acceleration of the rocket be at its absolute maximum 
in the interval [0,5]? How many seconds will this be after launch? (Hint: You may use a 
graphing calculator, or Excel spreadsheet) 
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Answer Key 
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Problem 1 - The above graphs show T(x) and m(x) graphed with Excel. Similar graphs will be 
rendered using a graphing calculator. For the thrust curve, T(x), the relative maxima are at (0, 
47) and (4,47). The relative minimum is at (2,31).  
 
Problem 2 - For the mass curve, M(x), the absolute maximum is at (0,37).      
 
Problem 3 - Answer: The curve reaches its maximum acceleration near (4.5,2.5). Because t = 
40  X, this occurs about 40 x 4.5 = 180 seconds after launch.  
 

Note to teacher: The units for acceleration are in Earth Gravities ( 1 G = 9.8 meters/sec
2
) so 

astronauts will feel approximately 2.5 times their normal weight at this point in the curve.   

6.3.1 

Acceleration curve in Earth Gravities
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6.8.1 Analyzing Graphs of Polynomial Functions 

 

 Since the 1930’s, physicists have 
known that the ‘vacuum’ of space is not 
empty. It contains particles and energy that 
come and go, and cannot be directly 
detected. Moments after the Big Bang, this 
vacuum energy was large enough that, by 
itself, it was able to cause the universe to 
expand by trillions of times in size. 
Astronomers call this Cosmological Inflation.  
 A number of theoretical studies of the 
vacuum state have focused attention on a 
polynomial function: 

                   4 2( )
6

L 2x m x V x  

 
This function, called the Coleman-Weinberg 
Potential,  allows physicists to calculate the 
energy of the vacuum state, V(x), in terms of 
the mass, x, of a new kind of yet-to-be-
discovered particle called the X-Boson. 

Problem 1 – Factor V(x) and determine the location for all of the x-intercepts for the 
general case where m and L are not specified. 
 
 
 
Problem 2 – For the specific case of V(x) for which m=5 and L = 6, determine its x-
intercepts. 
 
 
 
Problem 3 – Graph V(x) for m=5 and L=6 by plotting a selection of points between 
the x-intercepts. 
 
 
 
Problem 4 – What is the end behavior of V(x) for the selected values of  m and L? 
 
 
 
Problem 5 – Use a graphing calculator to find the relative maximum and the relative 
minima for V(x) with m=5 and L=6. 
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Answer Key 6.8.1 
 Problem 1 – Factor V(x) and determine the location for all of the x-intercepts for the 

general case where m and L are not specified. 

Answer:    V(x) = L/6 x
2
 (x

2
 – 6m

2
/L) 

The x-intercepts, where V(x)=0 are x1=0,  

                       x2=+(6m
2
/L)

1/2
             and          x3 = -(6m

2
/L)

1/2
 

 
Problem 2 – For the specific case of V(x) for which m=5 and L = 6, determine its x-
intercepts. 

Answer:  The function is    V(x) = x
4
 – 25x

2
  so 

                  x1 = 0,    x2 = (25)
1/2

 =  +5        and          x3 = -5  
 
Problem 3 – Graph  V(x) for m=5 and L=6 by plotting a selection of points between the 
x-intercepts. 
 
Answer: Below are some representative points: 
x -6 -4 -3 -2 -1 0 +1 +2 +3 +4 +6 
V(x) +396 -144 -144 -84 -24 0 -24 -84 -144 -144 +396
 
Sample graph: 
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Problem 4 – What is the end behavior of V(x) for the selected values of  m and L? 
Answer:  For x < -5  V(x) remains positive and increases  to +infinity. For x > +5 V(x) 
also remains positive and increases to + infinity. 
 
Problem 5 – Use a graphing calculator to find the relative maximum and the relative 
minima for V(x) with m=5 and L=6. Answer:    The relative maximum is at x=0, V(x)=0 
The relative minima are near x= +3.5, V(x)= -156, and x = -3.5, V(x) = -156.   
 
Note: The exact values for the relative minima, using calculus,  are  

x = +/- (3M
2
/L) = +/- 5(2)

1/2
 / 2 = +/- 3.54   V(x) =  -3/2 (M

4
/L)  = -156.25. 
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6.9.1 Polynomial Modeling with Technology 

 Unlike planets or other solid 
bodies, the sun does not rotate at the 
same speed at the poles or equator. By 
tracking sunspots at different latitudes, 
astronomers can map out the ‘differential 
rotation’ of this vast, gaseous sphere. 
 
 The photo to the left shows a 
large sunspot group as it passes across 
the face of the sun to reveal over the 
course of a few weeks, the rotation rate 
of the sun. 
 
(Carnegie Institute of Washington  image) 

Problem 1 – The table below gives the speed of rotation, V, of the sun at different 
latitudes, X. Find a polynomial, V(x),  that fits this data. 
 
X -40 -30 -20 -10 0 +10 +20 +30 +40 
V 13.2 13.5 14.0 14.3 14.4 14.2 14.1 13.8 13.3 
 
 
 
 
 
Problem 2 – To three significant figures, what would you predict as the speed of 
rotation at a latitude of -30? 
 
 
 
 
 
Problem 3 – The physical units for V(x) are degrees per day so that, for example, 
V(-20) = 14.0 degrees per day.   From your answer to Problem 1, create a related 
function, P(x), that predicts the rotation period of the Sun in terms of the number of 
days it takes to make a complete 360-degree rotation at each latitude. To three 
significant figures, A) how many days does it take at the equator (x=0)? B) how 
many days does it take at a latitude of +40 degrees? 
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Answer Key 6.9.1 
 Problem 1  Answer:   Using an Excel spreadsheet, a best-fit quadratic function is  

V(x)=-0.0007x
2
 + 0.0023x +14.33 

y = -0.0007x2 + 0.0023x + 14.33
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Problem 2 – To three significant figures, what would you predict as the speed of 
rotation at a latitude of -30? 
 

Answer:  V(50)= -0.0007(-30)
2
 + 0.0023(-30) +14.33 =  13.631    

 
                which to three significant figures is just 13.6 degrees/day. 
 
 
 
Problem 3 – The physical units for V(x) are degrees per day so that, for example, V(-
20) = 14.0 degrees per day.   From your answer to Problem 1, create a related 
function, P(x), that predicts the rotation period of the Sun in terms of the number of 
days it takes to make a complete 360-degree rotation at each latitude. To three 
significant figures,  A) how many days does it take at the equator (x=0)?  B) how many 
days does it take at a latitude of +40 degrees? 
 
Answer:   P(x) =  360 / V(x)  so 
 

               
2

360
( )

( 0.0007 0.0023 14.33)
P x

x x


  
 

 
A) P(0) =  360/14.33 =   25.0 days. 
 
B) P(+40) =  27.1 days 
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6.9.2 Polynomial Modeling with Technology 

 As a comet orbits the sun, it 
produces a long tail stretching millions of 
kilometers through space. The tail is 
produced by heated gases leaving the 
nucleus of the comet. 
 
 This image of the head of Comet 
Tempel-1 was taken by the Hubble 
Space Telescope on June 30, 2005. It 
shows the ‘coma’ formed by these 
escaping gases about 5 days before its 
closest approach to the sun (perihelion). 
The most interesting of these ingredients 
is ordinary water. 

Problem 1 – The table below gives the number of tons of water produced every 
minute, W, as Comet Tempel-1 orbited the sun. Find a polynomial, W(T),  that fits 
this data, where T is the number of days since its closest approach to the sun, 
called perihelion. 
 
T -120 -100 -80 -60 -40 -20 0 +20 +40 
W 54 90 108 135 161 144 126 54 27 
 
 
 
 
 
Problem 2 – To two significant figures, how many tons of water each minute were 
ejected by the comet 130 days before perihelion (T = -130)? 
 
 
 
 
Problem 3 - To two significant figures, determine how many tons of water each 
minute were ejected by the comet 50 days after perihelion (T = +50). Can you 
explain why this may be a reasonable prediction consistent with the mathematical 
fit, yet an implausible ‘Real World’ answer? 
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Answer Key 6.9.2 
 Problem 1 – The table below gives the number of tons of water produced every 

minute, W, as Comet Tempel-1 orbited the sun. Find a polynomial, W(T),  that fits this 
data, where T is the number of days since its closest approach to the sun, called 
perihelion. 
 
T -120 -100 -80 -60 -40 -20 0 +20 +40 
W 54 90 108 135 161 144 126 54 27 
 
 
Answer:  The graph below was created with Excel, and a quadratic trend line was 
selected. The best fit was for W(T)=-0.0177x2 – 1.5613x +112.91. Graphing 
calculators may produce different fits depending on the polynomial degree used. 
 

y = -0.0177x2 - 1.5613x + 112.91
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Problem 2 – To two significant figures, how many tons of water each minute were 
ejected by the comet 130 days before perihelion (T = -130)? 
 
Answer: From the fitted polynomial above 

W(-130) = -0.0177(-130)
2
 -1.5613 (-130) +112.91  =  17 tons/minute 

 
Problem 3 - To two significant figures, determine how many tons of water each minute 
were ejected by the comet 50 days after perihelion (T = +50). Can you explain why this 
may be a reasonable prediction consistent with the mathematical fit, yet an implausible 
‘Real World’ answer? 
 
Answer: The fitting function W(T) predicts that W(50) = -9.4 tons per minute. Although 
this value smoothly follows the prediction curve, it implies that instead of ejecting water 
(positive answer means a positive rate of change) the comet is absorbing water 
(negative answer means a negative rate of change), so the prediction is not realistic. 
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6.9.3 Polynomial Modeling with Technology 

 The sun is an active star. Matter 
erupts from its surface and flows into 
space under the tremendous magnetic 
forces at play on its surface.  
 Among the most dramatic 
phenomena are the eruptive 
prominences, which eject billions of tons 
of matter into space, and travel at 
thousands of kilometers per minute. 
 This image from the Solar and 
Heliophysics Observatory (SOHO) 
satellite taken on September 23, 1999 
and shows a giant prominence being 
launched from the sun. 

Problem 1 – The table below shows the height versus time data for an eruptive 
prominence seen on August 6, 1931. Graph the data, and find a polynomial, h(t),  that 
fits this data. 
 
t 15 15.5 16 16.5 17 17.5 18 18.5 19 
h 50 60 70 100 130 150 350 550 700 
 
 
 
 
 
 
 
 
Problem 2 – The data give the height, h, of the eruptive prominence in multiples of 
1,000 kilometers from the solar surface, for various times, t, given in hours. For example, 
at a time of 17 hours, the prominence was 130,000 kilometers above the solar surface. 
To two significant figures, how high was the prominence at a time of 19.5 hours? 
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Answer Key 6.9.3 
 Problem 1 – The table below shows the height versus time data for an eruptive 

prominence seen on August 6, 1931. Graph the data, and find a polynomial, h(t),  that 
fits this data. 
 
 
t 15 15.5 16 16.5 17 17.5 18 18.5 19 
h 50 60 70 100 130 150 350 550 700 
 
Answer:  The best fit degree-2 polynomial is 
 
                            h(t)= 65.195t2 – 2060 t +16321 

y = 65.195x2 - 2060.6x + 16321
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Problem 2 – The data give the height, h, of the eruptive prominence in multiples of 
1,000 kilometers from the solar surface, for various times, t, given in hours. For 
example, at a time of 17 hours, the prominence was 130,000 kilometers above the 
solar surface. To two significant figures, how high was the prominence at a time of 
19.5 hours? 
 

Answer:   h = 16.195(19.5)
2
 – 2060.6 (19.5) + 16321  

                   =   941.398 
                   = 940  to two significant figures 
 
Since h is in multiples of 1,000 km, the answer will be 940,000 kilometers. 
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