


This collection of activities is based on a weekly series of space science problems 
distributed to thousands of teachers during 2006-2007 school year. They were 
intended as extra-credit problems for students looking for additional challenges in 
the math and physical science curriculum in grades 9 through 12. The problems 
were designed to be authentic glimpses of modern science and engineering issues 
that come up in designing satellites to work in space, and to provide insight into the 
basic phenomena of the  Sun-Earth system, specifically ‘Space Weather’.  The 
problems were designed to be ‘one-pagers’ with a Teacher’s Guide and Answer 
Key as a second page.  This compact form was deemed very popular by 
participating teachers. 
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Alignment with Mathematics Standards 
       
 The following table connects the activities in this booklet to topics commonly covered in 
geometry, algebra and calculus textbooks.  The cells are shaded according to these three 
math content areas. The specific national math and science education standards (NSF 
‘Project 2061’) targeted by this product are: 
 
Grade 9-10 - Algebra I 
          Find answers to problems by substituting numerical values in simple algebraic formulas. 
          Use tables, charts and graphs in making arguments and claims in oral and written presentations. 
          Distances and angles inconvenient to measure directly can be found by using scale drawings. 
          Perform unit conversions in multi-step problems. 
 
Grade 11-12 - Algebra II and Calculus 
          Solve simple equations for ‘X’, and compound interest. 
          Examine practical applications of matrix algebra. 
          Work with trigonometric functions in simple applications. 
          Use the Chain Rule for Differentiation. 
          Find the areas under curves, both graphically and using simple integrals.  



Teacher Notes.  The order of the problems in this book reflects the order in which they were 
presented as Weekly Problems during the school year and do not represent a logical 
sequence of science study. Below are the general topic areas that are covered, and a 
suggested sequence of presentation by level of math difficulty if they are used as part of a 
course of study.  
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Different types of radiation can be shielded by different materials 
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 An  Introduction  to  Space  Radiation 

 
 
 

 
 
 
 
 
 

        Believe it or not, you are surrounded by radiation! 
As you are sitting here reading this article, 
electromagnetic radiation from sunlight, electric lights, 
power cables in the walls, and the local radio station are 
coursing through your body. Is it something to worry 
about? It all depends on how much you absorb, and in 
what forms. 
 
       There are two main types of radiation: 
electromagnetic radiation, and particle radiation. Both 
forms carry energy, which means that if you accumulate 
too much over time, either in the tissues of your body, or 
in sensitive electronic equipment, they can potentially do 
damage.  A small amount of ultraviolet radiation can give 
you a nice tan. Too much can increase your risk for skin 
cancer. A small amount of radio radiation is enough to 
pick up a distant station on your radio, but too much in a 
microwave oven will cook you in ten seconds flat! A 
small amount of  particle radiation in, say, the radium dial 
of a watch, is enough to make it glow in the dark 
harmlessly, but too much can destroy the DNA in your 
cells and lead to mutations…even death. 
 
Scientists measure radiation dosages and exposure in 
terms of units called Rads and Rems (Grays and 
Seiverts are used in Europe). Rad means 'Radiation 
Equivalent Dose' and REM means 'Roentgen Equivalent 
Man'.  One Rad is equal to 100 ergs of energy delivered 
to one gram of matter. The Rem compares the amount of 
absorbed energy to the amount of tissue damage it 
produces in a human.  
 
            Rad  =  Rem x Q 
 
Electromagnetic radiation, such as x-rays and gamma-
rays, produce 'one unit' or tissue damage, so for this kind 
of radiation Q = 1, and so 1 Rad = 1 Rem. Most low-
intensity forms of 'EM' radiation can be shielded by using 
clothing or skin creams. In high dosages, X-rays and 
gamma-rays require shielding to reduce their health 
effects, otherwise they can be lethal, or can even 
incinerate tissue. There are three different kinds of 
particle radiation, each produces its own level of tissue 
damage. 
 
Alpha-particles are given-off by radioactive atoms. They 
are nuclei containing two protons and two neutrons: 
essentially helium nuclei. These particles, at high energy,  
can be very destructive to tissue as they leave tracks of 
ionization in cytoplasm and other cellular tissues.  For 
these Q = 15-20. 
 
Beta-particles are also given off by radioactive atoms. 
They consist of energetic electrons traveling at high-
speed, and require several millimeters of aluminum or 
other shielding to stop most of them. For these, Q = 1. 
 
Neutron particles are produced in nuclear reactions 
including fission and fusion. Because they carry no 
charge, they easily penetrate many substances. Q = 10. 
 

6 
       Because of the differences in Q, different forms of radiation 
produce different levels of tissue damage. Beyond this, 
radiation also has different effects depending on how much you 
absorb over different amounts of time. Let's consider two 
extreme examples where your entire body is 'irradiated': A small 
dose over a long time, and a big does over a short time. 
 
Weak and Long! On the ground, you receive about 0.4 Rem 
(e.g. 400 milliRem) of natural backround radiation and radiation 
from all forms of medical testing, what you eat, and where you 
live. Over the course of your lifetime, say 80 years, this adds up 
to  80 x 0.4 = 32 Rem of radiation. By far, the biggest 
contribution comes from radioactive radon gas in your home, 
which can amount to as much as 0.1 Rem, which yields a 
lifetime dose of 8 Rem.  Some portion of this radiation exposure 
invariably contributes to the average cancer risk that each and 
every one of us experiences.  
 
Medical Diagnostic Radiation: 
      0.002  Rems Dental x-ray 
       0.010  Rems  Diagnostic  chest X-ray 
     0.065  Rems Pelvis/Hip x-ray 
     0.150  Rems Barium enema for colonoscopy 
      0.300  Rems Mammogram 
      0.440  Rems Bone scan 
    2 to 10 Rem CT scan of whole body 
 
 
Strong and Intense!  In cancer therapy, small parts of your 
body are irradiated to kill cancerous cells. This works because 
radiation transports energy into cellular tissue where it is 
absorbed, and cancerous cells are very sensitive to heat. 
Although patients report nausea and loss of hair, the benefits to 
destroying cancerous cells far outweighs the collateral effects. 
Typical dosages are about 200 Rems over a few square 
centimeters, or even 5,000 Rem over a single tumor area! For 
whole-body dosages, the effects are far worse! 
 
 
  50 -  100 Rems     No significant illness 
100 -  200 Rems     Nausia ,vomiting. 10% fatal in 30 days. 
200 -  300 Rems     Vomiting. 35% fatal in 30  days. 
300 -  400 Rems     Vomiting, diarrhea. 50% fatal in 30 days. 
400 -  500 Rems     Hair loss, fever, hemorrhaging in 3wks. 
500 -  600 Rems     Internal bleeding. 60% die in 30 days. 
600- 1,000 Rems     Intestinal damage. 100% lethal in 14 days. 
        5,000 Rems     Delerium, Coma: 100% fatal in 7 days. 
        8,000 Rems     Coma in seconds. Death in an hour. 
      10,000 Rems      Instant death.  
 
       Would you like to check your annual exposure? Visit the 
American Nuclear Society webpage and take their test at 
                           http://www.ans.org/pi/resources/dosechart/ 
 
or use the one at the US Environmental Protection Agency 
           http://www.epa.gov/radiation/students/calculate.html 
 
or the one at the Livermore National Radiation Laboratory 
                                 http://newnet.lanl.gov/main.htm 

Space Math                        http://spacemath.gsfc.nasa.gov 



Questions to ponder, based on the text. 
 
 
 
1- During an accident, a 70 kg person absorbed 1,000 Rem of x-ray radiation.  
 
  A)  How much energy, in ergs, did the person gain?  
 
  B)  If 41,600,000 ergs is needed to raise the temperature of 1 gram of water by 1 degree C, how many 
degrees did the radiation raise the person's body temperature if the human body is mostly water? 
 
 
 
 
 
2 -  Your probability of contracting cancer from the natural background radiation (0.3 Rem/year) 
depends on your lifetime exposure. From detailed statistics, a sudden 1 Rem increase in dosage causes 
an 0.08% increase in deaths during your lifetime, but the same dosage spread over a lifetime causes 
about 1/2 this cancer increase. By comparison, cancer studies show that a typical person has an 20% 
lifetime mortality rate from all sources of cancer.  (see "Radiation and Risk", Ohio State University, 
http://www.physics.isu.edu/radinf/risk.htm).   
 
  A) Consider 10,000 people exposed to radiation. How many natural cancer deaths would you expect to 
find in such a sample?  
 
 
 
 
 
  B) How much does the natural background radiation contribute to this cancer death rate?   
 
 
 
 
 
  C) Whenever you take a survey of people, there is a built-in statistical uncertainty in how precisely you 
can make the measurement, which is found by comparing the sample size to the square-root of the 
number of samples. In polls, this is referred to as the 'margin of error'. For your answer to Problem 2a, 
what is the range of people that may die from cancer in this population?   
 
 
 
 
  D) Compared to your answer to Problem 2B, do you think you would be able to measure the lifetime 
deaths from natural background radiation exposure compared to the variation in cancer mortality in this 
population? 
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Answer Key 
 
1- During an accident, a 70 kg person absorbed 1,000 Rem of x-ray radiation.   
 
     A)  How much energy, in ergs, did the person gain?  
           Answer:  For X-rays, which are electromagnetic radiation, Q = 1 so 1 Rem = 1 Rad. 
               Then, 1000 Rem x 100 ergs/gram  x 170 kg x 1000 gm/kg = 170,000,000,000 ergs.  
 
 
     B)  If 41,600,000 ergs is needed to raise the temperature of 1 gram of water by 1 degree C, how 
many degrees did the radiation raise the person's body if the human body is mostly water? 
 
          Answer:   1000 Rem  x 100 ergs/Rem  = 100,000 ergs  
                         So, 100,000 ergs/ (41,600,000 ergs/degree C) = 0.002 degrees C. 
 
 
 
2 -  Your probability of contracting cancer from the natural background radiation (0.3 Rem/year) 
depends on your lifetime exposure. From detailed statistics, a sudden 1 Rem increase in dosage causes 
an 0.08% increase in deaths during your lifetime, but the same dosage spread over a lifetime causes 
about 1/2 this cancer increase. By comparison, cancer studies show that a typical person has an 20% 
lifetime mortality rate from all sources of cancer.  (see "Radiation and Risk", Ohio State University, 
http://www.physics.isu.edu/radinf/risk.htm).   
 
A) Consider 10,000 people exposed to radiation. How many natural cancer deaths would you expect to 
find in such a sample?  
         Answer:  10,000 x 0.2  = 2,000 deaths over a  lifetime. 
 
 
B) How much does the natural background radiation contribute to this cancer death rate?   
        Answer:  0.3 Rem/yr  x 75 years x 0.04% =  0.9%   x 10,000 people = 90 people. 
 
 
C) Whenever you take a survey of people, there is a built-in statistical uncertainty in how precisely you 
can make the measurement, which is found by comparing the sample size to the square-root of the 
number of samples. In polls, this is referred to as the 'margin of error'. For your answer to Problem 2a, 
what is the range of people that may die from cancer in this population?   
        Answer:  (10000)1/2 =  100  so the range is from (2000 - 100) to  (2000 + 100)    
                                  or 1900 to 2100  people. 
 
 
D) Compared to your answer to Problem 2B, do you think you would be able to measure the lifetime 
deaths from natural background radiation exposure compared to the variation in cancer mortality in this 
population? 
        Answer:   Comparing the 90 deaths to the statistical uncertainty of 100 deaths in a sample of 
10,000 people, you would not be able to detect the 90 deaths assigned to the natural background, 
against the variation of deaths you statistically expect from all other causes of cancer. 
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1 Unit Conversion Exercises 
To understand the effect that radiation 
has on biological systems, a number of 
different systems for measurement have 
arisen over the last 50 years. European 
scientists prefer to use Grays and 
Seiverts while American scientists still 
use Rads and Rems! 
 
The chart to the left shows your typical 
radiation dosage on the ground and the 
factors that contribute to it. 

                                                         Basic  Unit  Conversions: 
 
1  Curie   =   37 billion disintegrations/sec                                          
 
1 Gray     =   100 Rads                                                                      0.001         milli       
 
1 Rad      =   0.01 Joules/kg                                                              0.000001    micro 
 
1 Seivert =   100 Rems                                                                     1 lifetime    = 70 years 
 
1 Roentgen = 0.000258 Charges/kg                                                 1 year        =  8760 hours 
 
1 microCoulomb/kg = 46 milliRem                                                    1 Coulomb =  6.24 billion billion charges 

Convert: 
 
1 .    360 milliRem per year to  ………………………….microSeiverts per hour 
 
 
2.     7.8 milliRem per day to   ………………………….Rem per year 
 
 
3.     1 Rad per day to  ……………………………………Grays per year 
 
 
4.     360 milliRem per year to ……………………………Rems per lifetime 
 
 
5.    3.0 Roentgens  to    ………………………………… charges per gram 
 
 
6.     5.6 Seiverts per year to  …………………………….milliRem per day 
 
 
7.    537.0 milliGrays per year to  ………………..……...milliRads per hour 
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1 Unit Conversion Exercises 
 

Answer Key 
 
 
1 .    360 milliRem per year to  ………………………….…0.41 microSeiverts per hour 
           360 milliRem/yr x 1Rem/1000 milliRem x 1 year/8760 hours = 0.000041 Rem/hour 
 0.000041 Rem/hour  x 1.0 Seiverts/100 Rem = 0.00000041 Seiverts/hour 
 0.00000041 Seiverts/hour x 1 microSeivert/0.000001Seivert = 0.41 microSeiverts/hour 
 
2.     7.8 milliRem per day to   ………………………..……2.8 Rem per year 
  7.8 milliRem/day x 365 days/year = 2847.0 milliRem/year  
   2847.0 milliRem/year x 1.0 Rem/1000milliRem = 2.8 Rem/year 
 
 
3.     1 Rad per day to  ……………………………………..…3.65 Grays per year 
   1 Rad/day x 365 days/year x 1 Gray/100 Rads = 3.65 Grays/year 
 
 
4.     360 milliRem per year to ………………………………25.2 Rems per lifetime 
    360 milliRem/year x 70 years/lifetime x 1 Rem/1000 milliRem =  25.2 Rems/lifetime 
 
 
 
5.    3.0 Roentgens  to    ………………………..…0.000000774 charges per gram 
     3.0 Roentgens x 0.000258 charges/kg per Roentgen = 0.000774 charges/kg 
       0.000774 charges/kilogram x 1.0 kg/1000 gram = 0.000000774 charges/gram 
 
 
 
6.     5.6 Seiverts per year to  ………………………………1530 milliRem per day 
 5.6 Seiverts/year x 1.0 Year/365 days x 100 Rem/1.0 Seivert = 1.53 Rem/day 
 1.53 Rem/day x 1000 milliRem/Rem = 1530 milliRem/day 
 
 
 
7.    537.0 milliGrays per year to  ………………………….6.13 milliRads per hour 
 537.0 milliGrays/year x 1.0 years/8760 hours x 100 Rads/1.0 Gray = 6.13 milliRads/hour 
 
 
Note: There are many different conversion 'chains' that the students can offer. The 
challenge is to set up each ratio correctly with the right number in the numerator and 
denominator! 
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2 Background Radiation and Lifestyles 
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As we go about our daily lives, we are 
constantly surrounded by naturally-
occurring sources of radiation. The 
accumulation of this radiation dosage every 
day throughout our lives leads to our total 
lifetime dosage. Depending on where we 
live, and our lifestyles, this lifetime dosage 
can make us susceptible to various forms of 
cancers. Generally, the lower your lifetime 
dose, the lower your risk for cancer.  
 
In the following activity, you will calculate 
the total lifetime dosages (in Rems) for a 
person living in several different geographic 
locations with a variety of lifestyles.  

 
1.   Nancy was born in Denver where the cosmic rays (GCR) produce 120 milliRem/year and an 
additional 105 milliRem/year comes from the ground (Terr.). After 30 years, she moves to 
Baton Rouge, Louisiana where GCR = 35 milliRem/year and Terr. = 40 milliRem/year.  At both 
locations, she buys the same kind of house and she receives 100 milliRem/year from radon 
gas in the basement. Assuming all other lifestyle sources contribute 50 milliRem/year during 
her entire life, and that she is now 65 years old, what has been her total radiation dosage to 
date in Rem? 
 
2. Suppose that Nancy was also a cigarette smoker since she was 16 years old, but that she 
gave up smoking when she turned 52. How much additional lifetime radiation dosage in Rems 
did she receive from this habit during the time she lived in Denver and Baton Rouge if her 
one-pack-a-day habit exposed her to 15 milliRem/year? 
 
3. Suppose that Nancy was also an airline pilot since she was 27 years old. She has been 
smoking since age 16. She flys 900 hours each year, with 90% of this time spent at cruising 
altitudes ( 35,000 feet) where the cosmic radiation dosage is  5 microSeiverts per hour. If 
1 Seivert = 100 Rems, how much additional radiation has she received than in your answer to 
Question 2? 
 
4.  Suppose that after 30 years, instead of moving to Baton Rouge, Nancy moved from 
Denver to Kerala, India where the terrestrial radiation dosage (Terr.) is 380 milliRem/year, 
but gives up smoking. What will be her total dosage by age 65? 
 
5.  Instead of being an airline pilot, at age 35 she decides to become a non-smoking 
astronaut. From Denver, she moved to  Baton Rouge for 5 years, and then finds a home in 
Houston near the NASA Johnson Spaceflight Center, which is the hub of manned 
spaceflight activities. At this location, GCR = 45 milliRem/year and Terr. = 30 milliRem/year. 
At age 39 she becomes the co-pilot for the Space Shuttle Atlantis on a 13-day trip, during 
which time her radiation dosage is 19 milliRem/day. If she takes three of these trips before 
age 65, what is her total dosage? 
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Answer Key: 
1. Nancy was born in Denver where the cosmic rays (GCR) produce 120 milliRem/year and an additional 105 
milliRem/year comes from the ground (Terr.). After 30 years, she moves to Baton Rouge, Louisiana where GCR = 35 
milliRem/year and Terr. = 40 milliRem/year.  At both locations, she buys the same kind of house and she receives 
100 milliRem/year from radon gas in the basement. Assuming all other lifestyle sources contribute 50 
milliRem/year during her entire life, and that she is now 65 years old, what has been her total radiation dosage to 
date in Rem? 
 
Denver;  (120 + 105 + 100 + 50)millirem/year x 30 years x 1 Rem/1000 milliRems = 11.25 Rem 
Baton Rouge:  (35 + 40 + 100 + 50) millirem/year x (65-30) years x 1 Rem/1000 milliRems = 
7.88 Rem 
   Total =  11.25 Rems + 7.88 Rems =  19.1 Rems. 
 
2. Suppose that Nancy was a cigarette smoker since she was 16 years old, but that she gave up smoking when she 
turned 52. How much additional lifetime radiation dosage in Rems did she receive from this habit during the time 
she lived in Denver and Baton Rouge if her one-pack-a-day habit exposed her to 15 milliRem/year? 
 
 Smoking = 15 milliRem/year x (52-16) years x 1.0 Rem / 1000 milliRems =  0.5 Rem 
    Geographic = 19.1 Rem 
     Total = 19.1 Rems + 0.5 Rems= 19.6 Rems 
 
3. Suppose that Nancy was also an airline pilot since she was 27 years old, and retired at 45.  She has been 
smoking since age 16. She flys 900 hours each year, with 90% of this time spent at cruising altitudes ( 35,000 
feet) where the cosmic radiation dosage is  5 microSeiverts per hour. If 1 Seivert = 100 Rems, how much additional 
radiation has she received than in your answer to Question 2? 
 
     900 hours/year x (45-27) x 0.90 = 14,580 hours. 
   5 microSeiverts/hour x 100 Rems/1 Seivert = 500 microRems/hour  
  500 microRems/hour x 14,580 hours x 1 Rem/1000000microRem =  7.3 Rems 
   Total = 19.6 Rems + 7.3 Rems = 26.9 Rems 
 
4.  Suppose that after 30 years, instead of moving to Baron Rouge, Nancy moved from Denver to Kerala, India 
where the terrestrial radiation dosage (Terr.) is 380 milliRem/year, but gives up smoking. What will be her total 
dosage by age 65? 
 Denver =  11.3 Rems 
 Kerala =  380 milliRems/year x (65-30) years x 1.0 Rem/1000 milliRems = 13.3 Rems 
  Total =  11.3 Rems + 13.3 Rems = 24.6 Rems 
 
5.  Instead of being an airline pilot, at age 35 she decides to become a non-smoking astronaut. After 30 years in 
Denver, she moves to Baton Rouge for 5 years, then finds a home in Houston. At this location, GCR = 40 
milliRem/year and Terr. = 30 milliRem/year. At age 39 she becomes the co-pilot for the Space Shuttle Atlantis on 
a 13-day trip, during which time her radiation dosage is 19 milliRem/day. If she takes three of these trips before 
age 65, what is her total dosage? 
Denver:  11.3 Rems 
Baton Rouge:  225 millirem/year x (35-30) years x 1 Rem/1000 milliRems = 1.1 Rem  
Houston: 220 millirem/year x (65-35) years x 1 Rem/1000 milliRems = 6.6 Rem  
Shuttle Flights: 3 x 13 days x 19 milliRem/day  = 0.7 Rems 
Total = 11.3 Rems + 1.1 Rems + 6.6 Rems + 0.7 Rems = 19.7 Rems 



3 A Perspective on Radiation Dosages 
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Space travel is understandably a risky business. 
One of the most well-studied, and worrisome, 
hazards is the radiation environment. The sun 
produces streams of high-energy particles and 
flares, while the universe itself also rains particles 
down upon us from distant supernova explosions 
and other energetic phenomena. But how bad is 
space travel compared to just staying on Earth? 
 
For the following problems, plot how the radiation 
environment changes for a person living in Denver, 
on the Space Station, on the Moon, and on a 
journey to Mars and back. Calculate the total 
radiation dosage by computing the area under the 
respective curves. 

 
 
1. Nancy was born and raised in Denver where her radiation dosage was 350 
milliRems/year. At age 25, she moved to Houston where her dosage was 225 milliRems/year, 
then moved to South Dakota 10 years later where her dosage was 450 milliRems/year until 
she retired at age 65. Create a plot showing 'YEAR' on the horizontal axis and 'Dosage' on 
the vertical axis. Prove that the product of the vertical axis units times the horizontal axis 
units is the total dose in milliRems. Plot Nancy's annual dosages and calculate her total 
dosage by age 65. 
 
 
 
2. An astronaut travels to the Moon on NASA's Orion Crew Vehicle, and spends two weeks 
on the lunar surface before returning to Earth. The radiation dosage is 19 milliRem/day in 
Earth orbit for each of two days.  The 1/2 day trip through the van Allen belts is 300 
milliRem/day. The journey to the Moon takes two days at 50 milliRem/day. The stay on the 
lunar surface under shielded conditions is 30 milliRem/day.  The astronaut returns to Earth 
retracing the previous conditions, followed by a 2-day stay at the International Space 
Station, where the dosage is 1.5 milliRem/hour.  Plot her dosage history and calculate the 
total dosage in Rems. 
 
 
 
3. An astronaut journeys to Mars. The radiation dosage is 19 milliRem/day at the 
International Space Station for each of two days.  The 1/2 day trip through the van Allen 
belts was 300 milliRem/day.  The crew spends 225 days traveling to Mars, during which time 
the dosages are 100 milliRems/day. On Mars, for a planned stay of 540 days, the dosage will 
be about 50 milliRem/day. This is followed by a similar 225-day return to earth, 1/2-day 
trip through the van Allen Belts, and a 2-day stay at the Space Station.  Plot her dosage 
history and calculate the dosages. 



3 
Answer Key: 
 
  

Problem 1: 
Denver to Houston to South Dakota: 
 (350 mRem/yr x 25 yrs)  +  (225 mRem/yr x 
10 yrs)  +  (450 mRem/yr x 30 yrs) =  24.8 
Rem 
 
 
 
 
Problem 2: 
Roundtrip:   
( 19 mRem/day x 2 days) + (300 mRem/day x 
0.5 days) + (50 mRem/day x 2 days) + (30 
mRem/day x 14 days) + ( 50 mRem/day x 2 
days) + (300 mRem/day x 0.5 days) + (19 
mRem/day x 2 days) =  1.1 Rem 
 
 
Problem 3: 
Earth to Mars:  
(19 mRem/day x 2 days) + (300 mRem/day x 
0.5 days) + (100 mRem/day x 225 days) + (50 
mRem/day x 540 days) =  49.7 Rem 
 
Return Trip =  22.7 Rem 
 
Total Trip =    49.7 Rem + 22.7 Rem = 72.4 
Rem 
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Note to Teacher:    
 
The total lifetime radiation dosages for the trips in Problem 2 and 3 will be in ADDITION to the total 
dosages that the astronauts receive on the ground before and after the trip into space. For example, if 
an astronaut lives in Houston all his life (70 years) where the environmental and lifestyle dosage is 
300 milliRems/year, the normal lifetime dosage will be  300 milliRems/year x 70 years = 21.0 Rems.  
 
 
In Problem 3,  an astronaut travels to Mars and back, taking  (2.5 + 225 + 540 + 225 + 2.5)= 995 days 
or 2.7 years their total Mars dosage will be  72.4 Rem added to (70-2.7)x 300 milliRems/year = 20.2 
Rems on the ground for a total lifetime dosage of  92.6 Rems!  
 
Another way to look at this is to recognize that a trip to Mars will equal about 72.4 Rem/0.300 Rem = 
241 years of normal background radiation living on Earth (in Houston)…but accumulated in only 2.7 
years! 



Having a Hot Time on Mars! 4 

D

C B

A 

 

Mars has virtually no 
atmosphere, and this means 
that, unlike Earth, its surface is 
not protected from solar and 
cosmic radiation. On Earth, the 
annual dosage on the ground is 
about 0.35 Rem/year, but can 
vary from 0.10 to 0.80 
Rem/year depending on your 
geographic location, altitude, 
and lifestyle.  
 
This figure, created with the 
NASA, MARIE instrument on 
the Odyssey spacecraft orbiting 
Mars,  shows the unshielded 
surface radiation dosages, 
ranging from a maximum of 20 
Rem/year (brown) to a 
minimum of 10 Rem/year (deep 
blue). 

 Astronauts landing on Mars will want to minimize their total radiation exposure during the 
540 days they will stay on the surface.  The Apollo astronauts used spacesuits that provided 0.15 
gm/cm2 of shielding. The Lunar Excursion Module provided 0.2 gm/cm2 of shielding, and the 
orbiting Command Module provided 2.4 gm/cm2. The reduction in radiation exposure for each of 
these was about 1/4, 1/10 and 1/50 respectively. Assume that the Mars astronauts used improved 
spacesuit technology providing a reduction of 1/8, and that the Mars Excursion Vehicle provided a 
1/20 radiation reduction. 
 
 The line segments on the Mars radiation map represent some imaginary, 1,000 km 
exploration tracks that ambitious astronauts might attempt with fast-moving rovers, and not a lot of 
food!  Imagine a schedule where they would travel 100 kilometers each day.  Suppose they spend 
20 hours a day within a shielded rover, and they study their surroundings in spacesuits for 4 hours 
each day.  
      
1)  Convert 10 Rem/year into  milliRem/day.         
     
2)  What is the astronauts radiation dosage per day in a region (brown) where the ambient 
background produces  20 Rem/year?    
            
3)  For each of the tracks on the map, plot a dosage history timeline for the 10 days of each 
journey. From the scaling relationship defined for one day in Problem 3, calculate the approximate 
total dosage to an astronaut in milliRems (mRems), given the exposure times and shielding 
information provided. 
 
4)  Which track has the highest total dosage in milliRems? The least total dosage? What is the 
annual dosage that is equivalent to these 20-day trips? How do these compare with the 350 
milliRems they would receive if they remained on Earth? 
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4 Having a Hot Time on Mars! 
 

1)  Convert 10 Rem/year into  milliRem/hour.         
                           Answer:   (10 Rem/yr)  x (1 year/ 365 days) x (1 day/24 hr) =  1.1 milliRem/hour 
 
 
 
 
2)  What is the astronauts radiation dosage per day in a region (brown) where the background is  20 Rem/year?    
   Answer:   From Problem 1,  20 Rem/year  =  2.2 milliRem/hour. 
   20 hours x (1/20) x 1.1 milliRem/hr  +  4 hours x (1/8) x 1.1 milliRem/hr  =   1.1 + 0.55 = 1.65 milliRem/day 
 
 
 
 
3)  For each of the tracks on the map, plot a dosage history timeline for the 10 days of each journey. From the scaling 
relationship defined for one day in Problem 3, calculate the total dosage in milliRems to an astronaut, given the exposure 
times and shielding information provided. The scaling relationship is that for each 20 Rems/year, the daily astronaut 
dosage is 0.66 milliRem/day  ( e.g. 0.66/20). The factor of 2 in the answers accounts for the round-trip. 
 
Track A dosage:     
 2x(12 Rems/yr x  10 days x  (1.65 / 20))  = 2x(9.9) =  19.8 mRem. 
 
Track B dosage:   
             2x( 16 Rems/yr x 3.3days + 18 Rems/yr x 3.3days + 20 Rems/yr x 3.3days)(1.65/20) =  2x(14.8) = 29.6 mRem 
 
Track C dosage:   
 2x(12 Rems/yr x 5 days x (1.65/20) + 14 Rems/yr x 5 days x (1.65/20)) =  2x(5.0 +  5.8)  = 21.6 mRem 
 
Track D dosage:    
 2x(18 Rems/yr x 5 days x (1.65/20)  + 20 Rems/yr x 5 days x (1.65/20)) =  2x(7.5 +  8.25) = 31.5 mRem 
 
 
 
4)  For this 20-day excursion, Track D has the highest dosage and Track A has the lowest.  The equivalent annual dosage 
for the lowest-dosage track is  19.8 milliRem x 365 days/10 days =  722 milliRem, which is about twice the annual dosage 
they would receive if they remained on Earth. For the highest-dosage trip, the annualized dosage is 1,149 milliRems which 
is about 3 times the dosage on Earth. 
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5 Calculating Total Radiation Dosages at Mars 

The NASA, Mars Radiation Environment Experiment (MARIE) measured the daily 
radiation dosages from a satellite orbiting Mars between March 13, 2002 and 
September 30, 2003 as shown in the figure above. The dose rate is given in units of 
milliRads per day.  (1 Rad = 2 Rems for cosmic radiation.) The six tall 'spikes' are 
Solar Proton Events (SPEs) which are related to solar flares, while the rest of the 
plotted data (the wiggly line!) is the dosage caused by galactic cosmic rays (GCRs).   
 
1. By finding the approximate area under the plotted data, calculate the total radiation 
dosage in Rems for the GCRs during the observation period between 4/03/2002 and 
8/20/2003. 
 
 
 
2.  Assuming that each SPE event lasted 3 days, and that its plotted profile is a 
simple rectangle, calculate the total radiation dosage in Rems for the SPEs during the 
observation period. 
 
 
 
3.  What would be the total radiation dosage for an unshielded astronaut orbiting 
Mars under these conditions?  
 
 
4. Are SPEs more important than GCRs as a source of radiation? Explain why or why 
not in terms of estimation uncertainties that were used.
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5 Calculating Total Radiation Dosages at Mars 
 

Teachers Note:  Because students will be asked to determine the areas under a 
complicated curve using rectangles, please allow student answers to vary from the below 
estimates, by reasonable amounts! This may be a great time to emphasize that, 
sometimes, two scientists can get different answers to the same problem depending on 
how they do their calculation. Averaging together the student responses to each answer 
may be a good idea to improve accuracy! 
 
1. By finding the approximate area under the plotted data, calculate the total radiation dosage in Rems for the GCRs during 
the observation period between 4/03/2002 and 8/20/2003. 
 
 From the graph, the average dosage rate is about 20 mRads/day. The time span is 
about  365 + 4x30 + 17 = 502 days. The area of a rectangle with a height of 20 
milliRads/day and a width of 502 days is  (20 milliRads/day) x (502 days) = 10040 
milliRads. This can be converted to Rems by multiplying by  (1 Rad/1000 milliRads) and by 
( 2 Rem/1 Rad) to get  20 Rems. 
 
 
2.  Assuming that each SPE event lasted 3 days, and that its plotted profile is a simple rectangle, calculate the 
total radiation dosage in Rems for the SPEs during the observation period. 
  Peak 1 =  53 milliRads/day x 3 days = 159 millirads 
     Peak 2 = 2866 millirads/day x 3 days = 8598 milliRads 
  Peak 3 =  90 milliRads/day x 3 days = 270 milliRads 
  Peak 4 =  1700 milliRads/day x 3 days =  5100 milliRads 
  Peak 5 =   70 milliRads/day x 3 days =  210 milliRads 
  Peak 6 =  140 milliRads/day x 3 days =  420 milliRads 
 
  The total dosage is  14,757 milliRads. 
 Convert this to  Rems by multiplying by (1 Rad/1000 milliRads) x (2 Rem/1 Rad) 
 To get   30 Rems after rounding. 
 
3.  What would be the total radiation dosage for an unshielded astronaut orbiting Mars under these 
conditions?   
Answer:   20 Rems + 30 Rems = 50 Rems for a 502-day visit. 
 
 
4. Are SPEs more important than GCRs as a source of radiation? Explain why or why not. 
 
Answer:  Solar Proton Events may be slightly more important than Galactic Cosmic 
Radiation for astronauts orbiting Mars.  
 
The biggest uncertainty is in the SPE dose estimate. We had to approximate the duration 
of each SPE by a rectangular box with a duration of exactly three days, although the plot 
clearly showed that the durations varied from SPE to SPE. If the average dose rate for 
each SPE were used, rather than the peak, and a shorter duration of 1-day were also 
employed, the estimate for the SPE total dosage would be significantly lower, perhaps by 
as much as a factor of 5, from the above estimates, which would make the GCR 
contribution, by far,  the largest. 
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6 Single Event Upsets in Aircraft Avionics 

 
 
 

          In 2001, the NASA Altair, Unmanned  Air Vehicle 
(UAV) flew its first flight at an altitude of 100,000 feet. 
Designed by NASA-Dryden engineers and scientists, it is 
designed to fly for up to 48 hours to complete a variety of 
science research studies of Earth.  For more details about 
this Dryden program, visit 
      http://www.nasa.gov/centers/dryden/news/FactSheets 
         Because of the complexity of the computer systems 
(called avionics) onboard, and the very high altitudes being 
flown, special attention had to be paid to cosmic ray showers. 
These particles, mostly neutrons, pass through the walls of 
the aircraft and can affect computer circuitry. For unmanned 
aircraft, the slightest computer glitch can spell the end of an 
$8 million aircraft.  This exercise explores some of the issues 
behind computer glitches at aircraft altitudes. 

The left-hand curve gives the number of neutrons that pass through each square centimeter of surface every second (the neutron 
flux). The right-hand plot gives the cumulative number of memory upsets at an altitude of 30,000 feet after a given number of 
hours in the air. 
 
1.  What is the neutron flux at 30,000 feet?  At 60,000 feet? 
 
2.  How many memory upsets were registered after 400 hours of flight?    
 
3.  If the aircraft carried 1560 memory modules (called SRAMS), each with 64,000 bytes of memory, how many 

bytes of memory were carried? How many binary 'bits' of memory were carried?  (1 byte = 8 bits) 
     
4. If each upset involved one bit having the wrong data value due to a neutron impact, how many bit upsets were  

registered per day?     
 
5. If the area of each memory unit is 7.5 x 10-9 cm2 ,what is the total area of all the memory modules? 
    
6. How many neutrons passed through this area in one second?   
 
7.  During the 400 hours of flight, how many neutrons passed through the memory modules?   
 
8. What is the probability that one neutron will cause an upset?    
 
9. How long do you have to wait for an upset to occur at 30,000 feet? At 60,000 feet? At 100,000 feet? 

      Between the high-radiation environment of space, and the comparative safety of the ground, lies the atmosphere. 
Most human activity in the military and commercial flight industry takes place between ground-level and 100,000 feet. 
As cosmic rays collide with atmospheric atoms, they liberate showers of particles deep into the lower atmosphere. The 
most penetrating of these are the charge-free neutrons.  The two figures below show the neutron flux versus altitude, 
and data taken from aircraft flying at 29,000 feet. The data were taken from a research paper by Taber and Normand 
(1993), and published in the IEEE Transactions on Nuclear Science, vol. 40, No. 2, pp 120. 
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6 
Answer Key: 
 
 
 
 
 
 

The left-hand curve gives the number of neutrons that pass through each square centimeter of surface every second (the neutron 
flux). The right-hand plot gives the cumulative number of memory upsets at an altitude of 30,000 feet after a given number of 
hours in the air. 
 
1.  What is the neutron flux at 30,000 feet?   
  From the graph:  0.35 neutrons/cm2/sec 
 
2.  How many memory upsets were registered after 400 hours of flight?     
  From the graph: 60 upsets 
 
3.  If the aircraft carried 1560 memory modules (called SRAMS), each with 64,000 bytes of memory, how many 
bytes of memory were carried? How many binary 'bits' of memory were carried?  (1 byte=8 bits) 
    1560*64000 = 99.8 megabytes x 8 bits/byte =  798,000,000 bits  
 
 
4. If each upset involved one bit having the wrong data value due to a neutron impact, how many bit upsets were 
registered per day?    60/(400/24) = 3.6 bits/day  for a population of 798,000,000 bits 
 
 
5. If the area of each memory unit is 7.5 x 10-9 cm2 ,what is the total area of the memory modules? 
     7.9 x 10-9 x 798,000,000 =  6.3 cm2. 
 
 
6. How many neutrons passed through this total memory area in one second?    
  From the answers to Problem 1 and 5:       
    0.35 neutrons/cm2/sec x 6.3 cm2 = 2.2 neutrons/second. 
 
 
7.  During the 400 hours of flight, how many neutrons passed through the memory modules?   
   2.2 neutrons/sec x 400 hours x 3600 seconds/hr = 3.2 million neutrons. 
 
 
8. What is the probability that one neutron will cause an upset?    
  From Problem 2 and 7:   60 upsets /3.2 million neutrons= 1 chance in 53,300. 
 
 
9.  How long do you have to wait for an upset to occur at 30,000 feet? 
The time it takes 53,300 neutrons to pass through the memory at  2.2 neutrons per second.  53,300/2.2 = 6.7 hours. 
Or  you can get it by  400/60 = 6.7 hours. 
 
At 60,000 feet, the neutron flux is  1.3/0.35 = 3.7 times higher than at 30,000 feet, so you would have to wait  
6.7/3.7 = 1.8 hours. 
 
At 100,000 feet, which is the cruising altitude of the Altair UAV, the graph suggests a neutron flux of about  1.0 
neutrons/cm2/sec, so the  flux is 1.0/0.35 = 2.9 times stronger at 100,000 feet than at 30,00 feet, and the time 
between upsets would be about  6.7/2.9 =  2.3 hours.   
 
 
 
 
If the UAV were equipped with this much memory (about 100 megabytes) and was airborne for 48 hours, it would 
experience  48/2.3 =  21 memory upsets!   This is why the computer systems on the UAV have to be radiation-
hardened and the software designed to fix radiation errors when they occur.  
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7 The Deadly Van Allen Belts? 

 
 
 

In 1958, Dr. James Van Allen discovered a collection of 
high-energy particle clouds within 40,000 km of Earth. 
Arranged like two nested donuts, the inner belt is 
mainly energetic protons, while the outer belts contain 
both protons and electrons. These belts have long 
been known as 'bad news' for satellites and astronauts, 
with potentially deadly consequences if you spend too 
much time within them.  The figure below, produced by 
scientists from the NASA, CRRES satellite, shows the 
radiation dosages at various locations within the belts. 
 
Blue = 0.0001 Rads/sec  Green= 0.001 Rads/sec  Yellow= 0.005 
Rads/sec     Orange= 0.01 Rads/sec and    Red= 0.05 Rads/sec. 

 The numbers along the horizontal axis 
give the distance from Earth in multiples of 
the Earth radius (1 Re=6378 km).  The 
Inner van Allen Belt is located at about 1.6 
Re. The Outer van Allen Belt is located at 
about 4.0 Re. At a distance of 2.2 Re, 
there is a 'gap' region in between these 
belts.  Satellites such as the Global 
Positioning System (GPS) orbit in this gap 
region where radiation effects are 
minimum.   
 
The International Space Station and Space 
Shuttle, on this scale, orbit very near the 
edge of the blue 'Earth disk' in the figure, 
so are well below the Van Allen Belts. 

Apollo astronauts, and astronauts in the upcoming visits to the Moon, will have to travel through some of 
these belt regions because the orbit of the Moon lies along the fastest line-of-travel from Earth.  On the 
scale of the above figure, the distance to the Moon is 60 Re. 
 
1.  The speed of the spacecraft will be about 25,000 km/hour. If the spacecraft travels along the 
indicated path (black bar), how long, in minutes, will it spend in the Blue, Green, Yellow, Orange and 
Red regions? 
 
 
 
 
2.  Given the indicated radiation dosages in Rads/sec for each zone, what will be the dosages that the 
astronauts receive in each zone? 
 
 
3.  What will be the total radiation dosage in Rads for the transit through the belts? 
 
 
4. Some people believe that the Apollo moon landings were a hoax because astronauts would have 
been instantly killed in the radiation belts. According to the US Occupation Safety and Health Agency 
(OSHA) a lethal radiation dosage is 300 Rads in one hour. What is your answer to the 'moon landing 
hoax' believers? 
 
Note: According to radiation dosimeters carried by Apollo astronauts, their total dosage for the entire trip to the moon and return 
was not more than 2 Rads over 6 days
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7 
Answer Key: 
 
 
 
 
 
 

          Apollo astronauts, and astronauts in the upcoming visits to the Moon,  will have to travel through 
some of these belt regions because the orbit of the Moon lies along the fastest line-of-travel from Earth.  
On the scale of the above figure, the distance to the Moon is 60 Re. 
 
1.  The speed of the spacecraft will be about 25,000 km/hour. If the spacecraft travels along the 
indicated path, how long, in minutes, will it spend in the Blue, Green, Yellow, Orange and Red regions? 
    Note: transit estimates may vary depending on how accurately students measure figure. 
 
                 Blue:  1.8 Re x (6378 km/Re) x (1 hour/25,000 km) x (60 minutes/1 hour) =      27.6 minutes 
                Yellow:  (1.4  x  6378) /25,000 x 60 =                                                                     6.1 minutes 
                Orange: (1.0 x  6378) / 25,000 x 60 =                                                                   15.3 minutes 
                Green:   (0.25 x 6378)/25,000 x 60 =                                                                      3.8 minutes 
                 Red:                                                                                                                          0 minutes 
                 Total transit time………………………  52.8 minutes  
 
 
 
2.  Given the indicated radiation dosages in Rads/sec for each zone, what will be the dosages that the 
astronauts receive in each zone? 
 
                 Blue:  =  27.6 minutes x ( 60 sec/ 1 minute) x (0.0001 Rads/sec) =                0.17 Rads 
                 Yellow = 6.1 minutes x 60 sec/minute x 0.005 rads/sec =                               1.83 Rads 
                 Orange = 15.3 minutes x (60 sec/minute) x 0.01 rads/sec =                           9.18 Rads 
                  Green = 3.8 minutes x (60 sec/minute) x 0.001 rads/sec =                            0.23 Rads 
 
 
 
3.  What will be the total radiation dosage in Rads for the transit through the belts? 
                   0.17 + 1.83 + 9.18 + 0.23 = 11.4 Rads 
 
 
 
4. Some people believe that the Apollo moon landings were a hoax because astronauts would have 
been instantly killed in the radiation belts. According to the US Occupation Safety and Health Agency 
(OSHA) a lethal radiation dosage is 300 Rads in one hour. What is your answer to the 'moon landing 
hoax' believers? 
 
Note: According to radiation dosimeters carried by Apollo astronauts, their total dosage for the entire trip to the moon and return 
was not more than 2 Rads over 6 days. 
 
 
The total dosage for the trip is only 11.4 Rads in  52.8 minutes.  Because 52.8 minutes is equal to 0.88 
hours, his is equal to a dosage of   11.4  Rads / 0.88 hours =  13 Rads in one hour, which is well below 
the 300 Rads in one hour that is considered to be lethal.  
 
Also, this radiation exposure would be for an astronaut outside the spacecraft during the transit through 
the belts. The radiation shielding inside the spacecraft cuts down the 13 Rads/hour exposure so that it is 
completely harmless. 
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8 Systems of Equations in Space Science 

         Solving a system of three equations in three unknowns 
can commonly be found in several space science and 
astronomy applications.  
 
           Solar flares are a frequent phenomenon on the sun, 
especially during the peaks of solar activity cycles. Over 21,000 
can occur during an average solar cycle period of 11 years! In 
our first problem, you will determine the average intensity of 
three classes of flares ('C', 'M' and 'X') by using statistical 
information extracted from three solar activity (sunspot!) cycles. 
 
 
 
During February 4 - 6, 2000 the peak month of Cycle 23 solar 
scientists tallied 37 C-class, 1 M-class and 1 X-class flares, for 
a total x-ray intensity of 705 mFU ( 1 mFU = 10-6 watts/m2) . 
 
During March 4 - 6, 1991 scientists tallied 15 C-class, 14 M-
class and 4 X-class flares for a total x-ray intensity of 2775  
mFU 
 
During  April 1 - 3, 2001 scientists tallied 5 C-class,  9  M-class 
and  4 X-class flares for a total x-ray intensity of 2475 mFU. 
 
 
Problem 1:  Use the above data to create a system of 
equations, solve them, and determine the average 
intensity of flares, to the nearest tenth, in each category 
(C, M and X) in units of mFU. 
 
 
          Communications satellites use electrical devices called 
transponders to relay TV and data transmissions from stations 
to satellite subscribers around the world. There are two basic 
types: K-band transponders operate at frequencies of 11-15 
GHz and C-band transponders operate at 3-7 GHz. Satellites 
come in a variety of standard models, each having its own 
power requirements to operate its pointing and positioning 
systems.  The following satellites use the same satellite model: 
  
Satellite 1 :     Anik F1   
              Total power = 15,000 watts 
 Number of K-band transponders =  48 
 Number of C-band transponders =  36 
 
Satellite 2 :    Galaxy IIIc 
              Total power =  14,900 watts 
 Number of K-band transponders =  53 
 Number of C-band transponders =  24 
 
Satellite 3 :   NSS-8  
              Total power =  16,760 watts 
 Number of K-band transponders =  56 
 Number of C-band transponders =  36 
 
Problem 2:  Use the data  to determine the average 
power, to the nearest integer, of a K-band and a C-band 
transponder, and the satellite operating power, F, in 
watts. 
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Answer Key: 
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After setting up the problems as a matrix, you might want to use the spiffy online matrix calculator at    
http://www.bluebit.gr/matrix-calculator/ 
 
Problem 1:  
 
The system of equations is 
 31 C  +  1  M  +  1  X  =  705 
              15 C  +  14 M  + 4  X  = 2775 
               5 C   +   9  M  + 4  X  = 2475 
 
Matrix: 
                31    1    1 
                15   14   4 
                 5     9    4 
 
Inverse: 
                0.031    0.008    -0.016 
              -0.062    0.184    -0.169 
               0.101   -0.425     0.650 
 
 
Solution: 
              C :       0.031 x 705  + 0.008 x 2775  -0.016 x 2475    =     4.5 mFU 
              M:       -0.062 x 705  + 0.185 x 2775  -0.169 x 2475   =     51.4 mFU 
              X:        0.101 x 705 -0.425 x 2775  +0.650 x 2475      =    500.2 mFU 
                               
 
Problem 2.  Solving for satellite transponder power, K and C,  and satellite operating power, F 
using 3 equations in three variables. From the satellite data 
                         48 K + 36 C + F =  15,000 
                         53 K + 24 C + F =  14,900 
                         56 K + 36 C + F =  16,760 
 
Matrix:        48  36  1 
                    53  24  1 
                    56  36  1 
 
Inverse:      -0.125     0.0       0.125 
       0.031   -0.083    0.052 
       5.875     3.00    -7.875 
 
 
Solution =    -0.125 x 15000 + 0.125 x 16,760 =  K   =   220 watts  per K-band transponder 
 
 0.031 x 15000 - 0.083 x 14,900 + 0.052 x 16,760 = C  =  100 watts  per C-band transponder 
 
              5.875 x 15000 + 3 x 14,900 - 7.875 x 16,760 = F   = 840 watts for the satellite operating power 
 
 



9 Monster Functions in Space Science  I 
Forget about the wimpy formulas you have played 
with before. Here is a reasonably complex formula 
that you will have to evaluate, and which will involve 
all the skills you have previously learned in 
algebra…and a mastery of scientific notation too! 
 
Be careful, but don't be shy! 
 
Keep track of your decimal points and exponents!! 
 
And, oh yes….Watch your back!!! 
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From 'An Analytic Solar Magnetic Field Model" by 
Banaszkiewicz, Axford and McKenzie (Astronomy 
and Astrophysics, vol. 337, p. 940-944. 
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ese formulas give the two components of 
e solar magnetic field, in units of Gauss,  
ere B = BBρ ρ + BzB  z where  ρ and z are the 
it vectors along these two directions.  

oblem 1:  Evaluate to the nearest tenth 
ρ) and (Bz) for the following conditions 
propriate to a distance from the sun equal to 
rth's orbit using the following information:  

= ρ2 + z2                                      K = 1.0 

= 6.03 x 10+17  kilometers3         Q = 1.5 

 = 1.07 x 10+6    kilometers 

ere       z = -3.48 x 107 kilometers  
              ρ =  1.46 x 108 kilometers.    

Problem 2:  Find the magnitude of the 
magnetic field strength using the values of the 
two computed components from Problem 1. 
 
Problem 3:  Explain what effect |z| has on 
plotting the magnetic field. 



9 
Answer Key: 
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For                 z = -3.48 x 107 kilometers                     ρ =  1.46 x 108 kilometers.   
Then              r  =   1.5 x 108 kilometers………this equals the Earth-Sun  orbital distance! 
 
 
                 3 (1.46 x 108)( -3.48 x 107)         15 (1.5)   (1.46 x 108)( -3.48 x 107)    (4 (-3.48 x 107)2 - 3 (1.46 x 108)2)           
Bp/M =   --------------------------------   +   ----------  ----------------------------    ------------------------------------------    
                              (1.5 x 108)

5
                              8                      (1.5 x 108)

7 
                                         (1.5 x 108)

2 
                

                 
 
                         1.0                                               1.46 x 108

                + ------------    ----------------------------------------------------- 
                   1.07 x 10+6           [  (3.48 x 107+1.07 x 10+6 )

2 
+ (1.46 x 108)

2  
]
3/2

 

    BBp         =    (6.03 x 10 ) (  - 2.0 x 10   +   2.3 x 10   +   4.0 x 10  )           =   2.4 x 10  Gauss +17 -25 -41 -23 -5

 
 
 
                   2(-3.48 x 107)

2 
- (1.46 x 108)

2
           3(1.5)     [ 8(-3.48 x 107)

4
 + 3(1.5 x 108)

4
 - 24(1.46 x 108)

2
 (-3.48 x 107)

2
]       

    Bz/M  =   ------------------------------------------   + -------   ------------------------------------------------------------------------------------------                         

                                        (1.5 x 108)
5 

                          8                                               (1.5 x 108)
9 

                                      
 
 
 
                                    1.0                                         (3.48 x 107   +  1.07 x 106) 
                       +   -----------------  ------------------------------------------------------------------------- 
                            (1.07 x 10+6 )         (    (3.48 x 107   +  1.07 x 106)

2 
+(1.46 x 108)

2   
)
3/2

 
 
 

      Bz      =     (6.03 x 10+17) (   -2.5 x 10
-25

  +  1.1 x 10
-41

   + 9.8 x 10
-24

  )    =     5.8 x 10-6  Gauss 
 
Problem 2:   Use the Pythagorean Theorem to find B.      B =  2.5 x 10-5 Gauss.   
 
Problem 3:  If you plot the value of B on the z-r plane, it will be symmetric along the z axis, reflected through a line at z=0. This 
is demonstrated in the figure on the front page of this problem. 



10 Parametric  Functions and Substitution 
 Error!

 
 
 
 
 
 
 
 
 

 
 
 

        Our sun is an active star that ejects a constant stream of 
particles into space called the 'solar wind'. From time to time, 
magnetic activity on its surface also launches fast-moving 
clouds of plasma into space called 'coronal mass ejections' or 
CMEs.  
        When some of these clouds directed at Earth arrive after 
traveling 93 million miles (150 million km), they cause intense 
disturbances in Earth's magnetic field. Since the 1800's, these 
disturbances have been called 'magnetic storms', because 
instruments on Earth can measure the strength of these 
disturbances, and they resemble storms in an otherwise very 
calm magnetic field.  
        Scientists measure the strength of these magnetic storms 
in terms of the size of the change they make in the Earth's 
magnetic field. The strength of Earth's field at the ground is 
about 0.7 Gauss or 70,000 nanoTeslas. The most intense 
magnetic storms can change the ground-level field by several 
percent. Image courtesy Dick Hutchinson 

        According to research by  V.  Yurchyshyn,  H. Wang and  V. Abramenko, which was published in 2004 
in the journal  Space Weather (vol. 2) the relationship between the magnetic field disturbance, Dst and the Z-
component of the interplanetary magnetic field, Bz, is given by: 
 

(1)         Dst = -2.846  + 6.54 Bz  - 0.118Bz
2  - 0.002Bz

3 

 
where Dst and Bz are measured in nanoTeslas (nT). 
 
        In 2004, W. D. Gonzales and his colleagues published a paper  in the Journal of Atmospheric and Solar 
Terrestrial Physics, in which they determined a relation between the speed of a solar coronal mass ejection 
V, in km/sec, and the strength of Dst  in nT according to 
 

(2)                               Dst = 0.00052 x (0.22 V + 340)2

 
        The relationship between the travel time to Earth from the sun and the speed of the CME was 
determined from catalogs of CME events by M. J. Owens and P. J. Cargill  in research published  in 2002  in 
the Journal of Geophysical Research (vol. 107, p. 1050) in terms of  the transit time in days, T, for these 
coronal mass ejections and their speed, V, in km./sec by 
 

(3)                                          T  =   -0.0042 x V  + 5.14 
 
They also found that the maximum interplanetary magnetic field strength of the CME was given by 
 

(4)                                               BT =  0.047 V  + 0.644  
 

1)  From the equation 2 and 3 above, find a function that gives Dst in terms of the transit time of 
the CME. Write the result in expanded form as a quadratic equation. 
 
 

2)  Assuming that Bz = BT / (2)1/2   use equations 1 and 4 to find a function that gives Dst  in 
terms of V.  
 
 
 
3)  From equations 2 and 4, find a function that gives Dst  in terms of BT.   
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Answer Key: 
 
 
 
 
 
 

       
(1)         Dst = -2.846  + 6.54 Bz  - 0.118Bz

2  - 0.002Bz
3 

 
(2)                               Dst = 0.00052 x (0.22 V + 340)2

 
(3)                                         T  =   -0.0042 x V  + 5.14 

 
(4)                                              BT =  0.047 V  + 0.644  

 
Problem 1:   From the equation 2 and 3:  Dst in terms of the transit time of the CME. 
 
      Eqn 3:   solve for V.   V =     (T - 5.14)/(-0.0042)  =    -238.1 T  +  1223.8    
      Eqn 2:  Substitute for V in terms of T:        
                                       Dst = 0.00052 x (0.22 ( -238.1 T + 1223.8) + 340)2 

                                              =  0.00052 x (  609.2  - 52.4 T )2

 

 In expanded form:   Dst  =   1.4 T2 - 33.2 T  + 193.0    in  nT units  
 
 

Problem 2:   Assuming that Bz = BT / (2)1/2   use equations 1 and 4 and find  Dst  in terms of V.  
 
Eqn 4:       Bz =   BT / (2)1/2   =  ( 0.047 V  + 0.644 )/(2)1/2 

                                                =   0.033 V  +  0.46 
 
Substituting into Eq 1: 
 
Dst  = -2.846 + 6.45 ( 0.033 V  +  0.46 ) - 0.118 (0.033 V  +  0.46 )2 - 0.002 (0.033 V  +  0.46 )3 

 
       =  ( -2.846 + 0.46*6.45 - 0.118*0.462 - 0.002* 0.463  ) + 
           ( 6.45*0.033  -0.118*2*0.46*0.033  -0.002*3.0* 0.462*0.033) V  + 
          ( -0.002*3.0*0.46*0.0332 ) V2  -0.002 * 0.0333 V3

 
    Dst   =   0.096 + 0.21 V  - 3.0 x 10-6 V2  -  7.2 x 10-8  V3

 
 
Problem 3:   From equations 2 and 4, find a function that gives Dst  in terms of BT.  
Eq 4: Solve for V   
                                V = (BBT - 0.644)/0.047   =   21.3 BT -  13.7  
 
Substitute into Eqn 1 :  Dst = 0.00052 x (0.22 (21.3 BT -  13.7 ) + 340)2

                                                 =  0.00052 ( 4.7 BBT  + 337)2

 

Expanded:               Dst =  0.011 BT
2  +  1.65 BT  +  59.1     in nT units 
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11 Radon Gas in the Basement: A Radiation Hazard 

 
 
 

 Most family rooms (dens) are located in the basements of homes across the country. This 
is also the place where radon gas can collect over time. When inhaled over time, radon gas adds 
to your lifetime natural background radiation exposure, and is a significant risk factor for various 
forms of lung and respiratory cancer. This is why in many states, home buyers must have 
prospective homes tested before purchase.  The typical, annual radiation exposure from all non-
radon forms of natural exposure is about 200 milliRem per year.  
 
 The above figure shows the four radon zones based on a study by the US Environmental 
Protection Agency (http://www.epa.gov/radon/zonemap.html). By the way, you can also find maps 
for individual states at this website. The four zones correspond to radiation dosages of Zone 1:   4 
picoCuries/liter  Zone 2:  3 picoCuries/liter  Zone 3: 2 picoCuries/Liter.  Note: 4 picoCuries/liter for 
a full-year exposure is equal to about 3 Rems. 
 
 
Problem 1:  A typical family may only spend 4 hours a day in the basement room. What fraction of 
a full year does this represent? 
 
 
 
Problem 2:  In Zone-1, a full years exposure equals 3 Rem. From your answer to Problem 1, what 
would you predict as the total annual dosage, in milliRems, for a member of this family if they were 
living in  A) Zone-1?  B) Zone-2?  C) Zone-3? 
 
 
Problem 3:  If a typical lifetime is 80 years, what would be the total lifetime radiation dosage from 
radon in Rem for the family members in Problem 1 if they lived in A)  Zone-1;  B) Zone-2; C) Zone-
3? 
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Answer Key: 
 
Problem 1:  A typical family may only spend 4 hours a day in the basement room. What fraction 
of a full year does this represent? 
 
Answer:   ( 4 / 24 )  =  1/6th of a year 
 
Problem 2:  In Zone-1, a full years exposure equals 3 Rem. From your answer to Problem 1, 
what would you predict as the total annual dosage, in milliRems, for a member of this family if 
they were living in:   
 
A) Zone-1?     
 Answer:            3 Rem/year  x 1/6 year =   1/2 Rem  =  500 millirem 
 
B) Zone-2?    
 Answer:   3/4 x 3 Rem/year x 1/6 year =    3/8 Rem  =  375 milliRem 
 
C) Zone-3? 
 Answer:    2/4 x 3 Rem/yr x 1/6 year =   1/4 Rem = 250 milliRem 
 
 
 
Problem 3:  If a typical lifetime is 80 years, what would be the total lifetime radiation dosdage 
from radon in Rem for the family members in Problem 1 if they lived in  
 
A)  Zone-1;    Answer = 80 x 1/2 Rem = 40 Rem  
 
B) Zone-2;     Answer = 80 x 3/8 Rem = 30 Rem 
 
C) Zone-3?    Answer = 80 x 1/4 Rem =  20 Rem. 
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12 Some Puzzling Thoughts about Space Radiation 

 
 
 

 We have all heard, since grade school, that 1___________ affects living systems by causing cell 
mutations. The particles such as fast-moving ions or 2____________ strike particular locations in the 
3_________ of a cell, causing the cell to malfunction, or 4______________ and pass-on a 5______________ to 
its progeny. Sometimes the mutations are not beneficial to an organism, or to the evolution of its species. When 
this happens you can get 6_______________.  
 
 Cancer risks are generally related to the total amount of lifetime radiation exposure. The studies of 
7________________ survivors, however, still show that there is much we have to learn about just how radiation 
delivers its harmful impact. Very large 8______________ over a short period of time seem not to have quite the 
deleterious affect that, say, a small dosage delivered steadily over many years does.  
 
 The National Academy of Sciences has looked into this issue rather carefully over the years to find a 
relationship between 9________________ cancer risks and low-level radiation exposure. What they concluded 
was that you get up to 100 cancers per 100,000 people for every 1000 10_____________ of additional dosage 
per year above the natural 11_______________ rate. If a dosage of 1000 millirems extra radiation per year, adds 
100 extra deaths per 100,000, then as little as one extra millirem per annum could cause cancer in one person 
per 12_______________. Although it's just a 13_________________ estimate, if you happen to be that 'one 
person' you will be understandably 14_________________. No scientific study, by the way, has shown that 
radiation has such a 15________________impact at all levels below 100 millirem, but that's what the 
16________________ application of arithmetic shows.  
 
 Government safety regulations now require that people who work with radiation, such as 17__________, 
nuclear medicine technologists, or nuclear power plant operators, are given a maximum permissible dose limit of 
500 millirems per year above the prevailing 18_____________ background rate. For you and me doing ordinary 
work in the office, factory or store, the acceptable maximum dose is 1000 milliRems/year above the 350 milliRem 
you get each year from natural sources. As a comparison, if you lived within 20 miles of the 19__________ 
nuclear power 20_____________ at the time of its 21_________ meltdown, your annual dose would have been 
about 1500 milliRem/year during the first year, declining slowly as the radioactive 22_____________ in the 
environment decay                                                (Excerpted from 'The 23rd Cycle", Sten Odenwald, Columbia University Press) 
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Solve for X in each equation, and select the correct word from the pair of solutions for X, to fill-in the 
indicated blanks from 1 to 22 in the essay above. 
 
1)        x2   - 2x     - 3     = 0                         12)       x2 -    3x  - 88    = 0                                              
2)        x2  + 4x     - 5     = 0              13)       x2 -    4x  - 21      = 0                
3)        x2   - 3x    + 2    = 0                          14)       x2 -      x  - 30      = 0         
4)        x2   - x     - 12    = 0             15)       x2  -   9x  -  36     = 0             
5)      2x2  - 12x + 10    = 0             16)       x2  - 16x  + 63     = 0          
6)        x2  - 2x   - 24     = 0                  17)       x2 + 16x  + 63     = 0       
7)        x2  + 5x   + 6     = 0               18)       x2 + 14x  + 48     = 0    
8)        x2  - 9  = 0                        19)       x2  + 19x + 90     = 0    
9)      2x2 + 4x  -  30    = 0               20)       x2 +  8x   -  33     = 0      
10)    3x2 + 3x - 6        = 0             21)       x2  -  100  = 0          
11)      x2 -  6x  - 16     = 0               22)       x2  -  8x    = 0            
 
Word bank - factor list 
 
    -11     plant                 -4 cancer         3    lifetime                          10    1986                        
    -10 2005             -3 dosages                   4 survive              11    hundred 
      -9 Chernobyl       -2 Hiroshima        5 mutation             12     linear 
      -8 million        -1 radiation        6 upset 
      -7 dentists         0 isotopes        7 statistical 
      -6 natural         1 milliRems        8 background 
      -5 neutrons        2 DNA         9 blind 
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1)        (x - 3) (x + 1)              3, -1       radiation                 12)       (x + 8) (x - 11)           -8, 11     million              
2)        (x + 5 ) (x - 1)            -5, 1        neutrons     13)       (x - 7) (x+3)                7, -3      statistical 
3)        (x - 2 ) (x - 1)              2,  1       DNA                 14)       (x - 6) (x + 5)             -5, 6       upset 
4)        (x - 4) (x + 3)              4  ,-3      survive     15)       (x - 12 ) (x + 3)         12, -3      linear 
5)        (2x - 2) (x - 5)             1 , 5       mutation     16)       (x - 7) (x - 9)               7, 9       blind 
6)        (x - 6) (x + 4)              6, -4       cancer     17)       (x + 7) (x + 9)            -7, -9      dentists 
7)         (x + 2) (x + 3)           -2, -3       Hiroshima     18)       (x + 6) (x + 8)            -6, -8      natural 
8)         (x + 3) (x - 3)            -3, 3        dosages     19)       (x + 10) (x + 9)        -10, -9      Chernobyl 
9)        (2x - 6) (x + 5)            3, -5       lifetime     20)       (x + 11) (x - 3)         -11, 3        plant 
10)      (3x + 6) (x - 1)            2, 1        milliRems     21)       (x + 10) (x - 10)       -10, 10      1986 
11)      (x - 8) (x + 2)              8, -2       background 22)       x ( x - 8)                     0, 8         isotopes 
 
Word bank - factor list 
 
-11        plant                                            12       linear 
-10 2005                            11       hundred 
-9 Chernobyl   10      1986 
-8 million      9       blind 
-7 dentists      8       background                    
-6 natural      7       statistical 
-5 neutrons     6       upset 
-4 cancer      5       mutation 
-3 dosages     4       survive 
-2 Hiroshima     3       lifetime 
-1 radiation     2       DNA 
 0          isotopes     1       milliRems 

Here are the correct words added:  
 
 We have all heard, since grade school, that 1-radiation affects living systems by causing cell mutations. The particles 
such as fast-moving ions or 2-neutrons strike particular locations in the 3-DNA of a cell, causing the cell to malfunction, or 4-
survive and pass-on a 5-mutation to its progeny. Sometimes the mutations are not beneficial to an organism, or to the 
evolution of its species. When this happens you can get 6-cancer.  
 
 Cancer risks are generally related to the total amount of lifetime radiation exposure. The studies of 7-Hiroshima 
survivors, however, still show that there is much we have to learn about just how radiation delivers its harmful impact. Very large 
8-dosages over a short period of time seem not to have quite the deleterious affect that, say, a small dosage delivered steadily 
over many years does.  
 
 The National Academy of Sciences has looked into this issue rather carefully over the years to find a relationship 
between 9-lifetime cancer risks and low-level radiation exposure. What they concluded was that you get up to 100 cancers per 
100,000 people for every 1000 10-millirems of additional dosage per year above the natural 11-background rate. If a dosage 
of 1000 millirems extra radiation per year, adds 100 extra deaths per 100,000, then as little as one extra millirem per annum 
could cause cancer in one person per 12-million. Although it's just a 13-statistical estimate, if you happen to be that 'one 
person' you will be understandably 14-upset. No scientific study, by the way, has shown that radiation has such a 15-linear 
impact at all levels below 100 millirem, but that's what the 16-blind application of arithmetic shows.  
 
 Government safety regulations now require that people who work with radiation, such as 17-dentists, nuclear 
medicine technologists, or nuclear power plant operators, are given a maximum permissible dose limit of 500 millirems per year 
above the prevailing 18-natural background rate. For you and me doing ordinary work in the office, factory or store, the 
acceptable maximum dose is 1000 milliRems/year above the 350 milliRem you get each year from natural sources. As a 
comparison, if you lived within 20 miles of the 19-Chernobyl nuclear power 20-plant at the time of its 21-1986 meltdown, your 
annual dose would have been about 1500 milliRem/year during the first year, declining slowly as the radioactive 22-isotopes in 
the environment decay away.  
                                       (Excerpted from 'The 23rd Cycle", Sten Odenwald, Columbia University Press) 
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13 Moving Magnetic Filaments Near Sunspots 

 
 
 

These two images were taken by the Hinode (Solar-B) solar observatory on October 30, 2006. 
The size of each image is 34,300 km on a side.  The clock face shows the time when each image 
was taken, and represents the face of an ordinary 12-hour clock.  
 
1) What is the scale of each image in kilometers per millimeter? 
 
 
2) What is the elapsed time between each image in;  A) hours and minutes?  B) decimal hours? 
C) seconds? 
 
 
Carefully study each image and look for at least 5 features that have changed their location  
between the two images. (Hint, use the nearest edge of the image as a reference). 
 
 
3)  What direction are they moving relative to the sunspot? 
 
 
4)  How far, in millimeters have they traveled on the image? 
 
 
5) From your answers to questions 1, 2 and 4, calculate their speed in kilometers per second, and 
kilometers per hour. 
 
 
6) A fast passenger  jet plane travels at 600 miles per hour. The Space Shuttle travels 28,000 
miles per hour. If 1.0 kilometer = 0.64 miles, how fast do these two craft travel in kilometers per 
second? 
 
7)  Can the Space Shuttle out-race any of the features you identified in the sunspot image? 
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Answer Key: 
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These two images were taken by the Hinode (Solar-B) solar observatory on October 30, 2006. The size of 
each image is 34,300 km on a side.  The clock face shows the time when each image was taken.  
 
1) What is the scale of each image in kilometers per millimeter?  Answer: The pictures are 75 mm on a side, 
so the scale is  34,300 km /75mm =  457 km/mm 
 
2) What is the elapsed time between each image  in; 
                 A)  hours and minutes?   About  1 hour and 20 minutes.  
                 B)  decimal hours?          About  1.3 hours      
                 C)  seconds?                   About  1.3 hours x 3600  seconds/hour =  4700 seconds 
 
Carefully study each image and look for at least 5 features that have changed their location between the two 
images. (Hint, use the nearest edge of the image as a reference). Students may also use transparent paper 
or film, overlay the paper on each image, and mark the locations carefully. 
  The above picture shows one feature as an example.  
 
3)  What direction are they moving relative to the sunspot? 
    Answer: Most of the features seem to be moving away from the sunspot. 
 
4)  How far, in millimeters have they traveled on the image?  Answer: The feature in the above image has 
moved  about 2 millimeters. 
 
5) From your answers to questions 1, 2 and 4, calculate their speed in kilometers per second, and kilometers 
per hour. Answer:  2 mm x 457 km/mm =  914 kilometers in 4700 seconds =  0.2 kilometers/sec or  703 
kilometers/hour.   
 
6) A fast passenger  jet plane travels at 600 miles per hour. The Space Shuttle travels 28,000 miles per hour. 
If 1.0 kilometer = 0.64 miles, how fast do these two craft travel in kilometers per second?  Jet speed =  600 
miles/hr x ( 1 / 3600 sec/hr)  x  (1 km/0.64 miles)  =   0.26 km/sec.  Shuttle = 28,000 x (1/3600) x (1/0.64) = 
12.2 km/sec. 
 
7)  Can the Space Shuttle out-race any of the features you identified in the sunspot image? Answer: Yes, in 
fact a passenger plane can probably keep up with the feature in the example above! 
 
8) Are the features moving at increasing speed away from the sunspot, or traveling at a constant speed? 



14 Correcting Bad Data Using Parity Bits 

 

       Data is sent as a string of ‘1’s and ‘0’s which are 
then converted into useful numbers by computer 
programs. A common application is in digital imaging. 
Each pixel is represented as a ‘data word’ and the image 
is recovered by relating the value of the data word to an 
intensity or a particular color. In the sample image to the 
left,  red is represented by the data word ‘10110011’, 
green is represented by ‘11100101’ and yellow by the 
word ‘00111000’, so the first three pixels would be 
transmitted as the ‘three word’ string 
‘101100111110010100111000’. But what if one of those 
1-s or 0-s was accidentally reversed? You would get a 
garbled string and an error in the color used in a 
particular pixel.   
       Since the beginning of the Computer Era, engineers 
have anticipated this problem by adding a ‘parity bit’ to 
each data word. The bit is ‘1’ if there are an even number 
of 1’s in the word, and’ 0’ if there is an odd number. In the 
data word for red ‘10110011’ the last ‘1’ to the right is the 
parity bit. 

 
The first few pixels in a large image 
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       When data is produced in space, it is protected by parity bits, which alert the scientists that a particular 
data word may have been corrupted by a cosmic ray accidentally altering one of the data bits in the word. 
For example, Data Word A ‘11100011’ is valid but Data Word B  ‘11110011’ is not. There are five ‘1’s but 
instead of the parity bit being ‘0’  (‘11100010’ ), it is ‘1’ which means Data Word B had one extra ‘1’ added 
somewhere.  One way to recover the good data is to simply re-transmit data words several times and fill-in 
the bad data words with the good words from one of the other transmissions.  For example: 
 
            Corrupted data string:   10111100     1011010      10101011        00110011         10111010   
            Good data string:          10111100     1001010      10101011        10110011         10111010 
 
       The  second and fourth words have been corrupted, but because the string was re-transmitted twice, we 
were able to ‘flag’ the bad word and replace it with a good word with the correct parity bit.  Cosmic rays often 
cause bad data in hundreds of data words in each picture, but because pictures are re-transmitted two or 
three times, the bad data can be eliminated and a corrected image created. 
 
Problem:   Below are two data strings that have been corrupted by cosmic ray glitches. Look through the 
data (a process called parsing) and use the right-most parity bit to identify all the bad data. Create a valid 
data string that has been ‘de-glitched’. 
 
String 1:            10111010       11110101       10111100       11001011      00101101   
 01010000       01111010       10001100       00110111      00100110   
 01111000       11001101       10110111       11011010      11100001   
 10001010       10001111       01110011       10010011      11001011 
 
 
String 2:            10111010        01110101       10111100       11011011      10101101   
 01011010        01111010       10001000       10110111       00100110   
 11011000       11001101        10110101       11011010       11110001   
 10001010       10011111        01110011       10010001       11001011 
 
 
 
 



14 
Answer Key: 
 
 
 
 
 
 

       
 
Problem:   Below are two data strings that have been corrupted by cosmic ray glitches. Look through the 
data (a process called parsing) and use the right-most parity bit to identify all the bad data. Create a valid 
data string that has been ‘de-glitched’.   
 
 
The highlighted data words are the corrupted ones. 
 
String 1:            10111010       11110101       10111100       11001011      00101101   
 01010000       01111010       10001100       00110111      00100110   
 01111000       11001101       10110111       11011010      11100001   
 10001010       10001111       01110011       10010011      11001011 
 
 
String 2:            10111010        01110101       10111100       11011011      10101101   
 01011010        01111010       10001000       10110111       10100110   
 11011000       11001101        10110101       11011010       11110001   
 10001010       10011111        01110011       10010001       01001011 
 

 
In the first string, 11110101  has a parity bit of ‘1’  but it has an odd number of ‘1’ so its 
parity should have been ‘0’ if it were a valid word.  Looking at the second string, we see 
that the word that appears at this location in the grid is ‘01110101’  which has the correct 
parity bit. We can see that a glitch has changed the first ‘1’ in String 2 to a ‘0’ in the 
incorrect String 1.  
 
 
By replacing the highlighted, corrupted data words with the uncorrupted values in the other 
string, we get the following de-glitched data words: 
 
 

Corrected:           10111010        01110101       10111100       11001011      10101101   
   01011010        01111010       10001100       00110111       00100110   
   11011000       11001101        10110101       11011010       11110001   
   10001010       10001111        01110011       10010001       11001011 
 
 
The odd word is the first word in the third row.  The first transmission says that it is ‘01111000’ and the 
second transmission says it is ‘11011000’      Both wrong words have a parity of ‘1’ which means there is an 
even number of ‘1’ in the first seven places in the data word. But the received parity bit says ‘0’ which means 
there was supposed to be an odd number of ‘1’s in the correct word. Examining these two words, we see 
that the first three digits are ‘011’ and ‘110’  so it looks like the first and third digits have been altered. 
Unfortunately, we can’t tell what the correct string should have been. Because the rest of the word ‘11000’ 
has an even parity, all we can tell about the first three digits is that they had an odd number of ‘1’s so that 
the total parity of the complete word is ‘0’ . This means the correct digits could have been ‘100’, ‘010’, ‘111’, 
or ‘111’, but we can’t tell which of the three is the right one. That means that this data word remains 
damaged and can’t be de-glitched even after the second transmission of the data strings.  
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15 Data Corruption by High-Energy Particles 

 
 
 

 
 

       Solar flares can severely affect sensitive instruments in 
space and corrupt the data that they produce. On July 14, 2000 
the sun produced a powerful X-class flare, which was captured 
by instruments onboard the Solar and Heliospheric Observatory 
(SOHO). The EIT imager operating at a wavelength of 195 
Angstroms, showed a brilliant flash of light (left image). When 
these particles arrived at the SOHO satellite some time later, 
they caused the imaging equipment to develop ‘snow’ as the 
individual particles streaked through the sensitive electronic 
equipment. The above images taken by the SOHO LASCO c2 
and c3 imagers show what happened to that instrument when 
this shower of particles arrived. The date and time information 
(hr : min) is given in the lower left corner of each image, and 
give the approximate times of the events.  

Problem 1:  At about what time did the solar flare first erupt on the sun? 
Problem 2:  At about what time did the LASCO imagers begin to show significant signs of the particles having 

arrived? 
Problem 3:  If the SOHO satellite was located 147 million kilometers from the sun, about what was the speed of 

the arriving particles? 
Problem 4:  If the speed of light is 300,000 km/sec, what percentage of light-speed were the particles traveling? 
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Answer Key: 
 
 
 
 
 
 

Problem 1:  At about what time did the solar flare first erupt on the sun? 
 
          Answer:  The EIT image time says  10:24   or 10 hours and 24 minutes Universal Time 
The reason this is not an exact time is because the images were taken at set times, and not at the exact 
times of the start or end of the events. To within the 24-minute interval between successive EIT images, we 
will assume that 10:24 UT is the closest time. 
 
 
 
Problem 2:  At about what time did the LASCO imagers begin to show significant signs of the particles 
having arrived? 
 
 Answer:  The top sequence shows that the ‘snow began to fall’ at 10:54 UT. The second sequence 
suggests a later time near 11:18. However, the 11:18 time is later than the 10:54 time. The time interval 
between exposures is 24 minutes, but the top series started at 10:30  and ended at 10:54 UT, while the 
lower series started at 10:42 and ended at 11:18.  That means, comparing the exposures between the two 
series, the snow arrived between  10:42 and 10:54 UT.  We can split the difference and assume that the 
snow began around 10:48 UT. 
 
 
 
Problem 3:  If the SOHO satellite was located 147 million kilometers from the sun, about what was the 

speed of the arriving particles? 
 

Answer:  The elapsed time between the sighting of the flare by EIT (10:24 UT) and the beginning of the 
snow seen by LASCO (10:48 UT) is  10:48 UT – 10:24 UT  =   24 minutes.  The speed of the particles was 
about  147 million km/24 minutes or   6.1 million km/minute.  
 
 
 
Problem 4:  If the speed of light is 300,000 km/sec, what percentage of light-speed were the particles 
traveling? 
 
Answer:    Converting  6.1 million km/minute into  km/sec  we get   6,100,000 km/sec  x (1 min /60 sec) 
or 102,000 kilometers/sec.  Comparing this to the speed of light we see that the particles traveled at 
(102,000/300,000)x100% = 34% the speed of light! 
 
 
 
Note:  Because these damaging high-speed particles can arrive only a half-hour after the x-ray flash is first 
seen on the sun, it can be very difficult to protect sensitive equipment from these storms of particles if you 
wait for the first sighting of the solar flare flash. In some cases, science research satellites have actually 
been permanently damaged by these particle storms.  
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16 The Pressure of a Solar Storm 

      The ACE satellite measures the density and speed of 
the solar wind as it approaches Earth, and also measures 
the strength of its magnetic field. Both the magnetic field, 
and the kinetic energy of the particles, cause a build-up 
of pressure acting upon Earth’s magnetic field. This 
forces Earth’s magnetic field closer to the planet’s 
surface, and can expose satellites orbiting Earth to the 
potentially harmful effects of cosmic rays and other high-
energy particles. Based on actual data from the ACE 
satellite, in this problem you will calculate the particle and 
magnetic pressure and determine the distance from 
Earth of the pressure equilibrium region of the magnetic 
field, called the magnetopause. Image (left) courtesy: 
    http://www.tecplot.com/showcase/studies/2001/michigan.htm 

Magnetopause Distance: 

 

 

Ram Pressure:  Magnetic Pressure: 
  12                 1.8 x 10 

6
 R  =  --------------------- 

 
 

-8 2 
Pr = 1.6 x 10  N V

 
 

-6 2
   Pm  = 4.0 x 10    B

2 
                  N  V

 

 

 
 
 

 
V – gas speed in km/sec,  
 
R – magnetopause distance in Re   
  

 

N - gas density  in particles/cc  
 
V - gas speed in km/sec 
 

 
B – Cloud’s field strength  in nanoTeslas (nT) 
 
Pm – magnetic pressure  in microErgs/cc 

N – gas density in particles/cc Pr – ram pressure in microErgs/cc 

Problem 1:  Use the formulae and the values cited in the table to complete the last three columns. A 
few cases have been computed as examples.  
 
Problem 2:  A geosynchronous communications satellite is orbiting at a distance of 6.6 Re  (1 Re = 1 
Earth radius= 6,378 km). For which storms will the satellite be directly affected by the solar storm 
particles? 
 
Problem 3:  Within each storm event, which pressure is the strongest, ram pressure or magnetic 
pressure?  

Date Flare N 
(particle/cc) 

V 
(km/s) 

B  
(nT) 

Pr Pm Distance 
(Re) 

9-7-2005 X-17 50 2500 50 5.0 0.01 4.2 
7-13-2005 X-14 30 2000 20    
1-16-2005 X-2.8 70 3700 70    
10-28-2003 X-17 100 2700 70    
11-4-2003 X-28 80 2300 49 6.8 0.01 4.0 
4-21-2002 X-1.5 20 2421 10    
7-23-2002 X-4.8 40 1200 15    
4-6-2001 X-5.6 20 1184 20    
7-14-2000 X-5.7 30 2300 60    
11-24-2000 X-1.8 50 2000 10 3.2 0.0004 4.6 
8-24-1998 X-1 15 1500 10    
Note: Density and magnetic field strength are estimates for purposes of this calculation only. 
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Answer Key: 
 
 
 
 
 
 

Date Flare N 
(particle/cc) 

V 
(km/s) 

B  
(nT) 

Pr Pm Distance 
(Re) 

9-7-2005 X-17 50 2500 50 5.0 0.01 4.2 
7-13-2005 X-14 30 2000 20 1.9 0.002 5.0 
1-16-2005 X-2.8 70 3700 70 15.3 0.02 3.5 
10-28-2003 X-17 100 2700 70 11.7 0.02 3.7 
11-4-2003 X-28 80 2300 49 6.8 0.01 4.0 
4-21-2002 X-1.5 20 2421 10 1.9 0.0004 5.0 
7-23-2002 X-4.8 40 1200 15 0.9 0.0009 5.6 
4-6-2001 X-5.6 20 1184 20 0.4 0.002 6.3 
7-14-2000 X-5.7 30 2300 60 2.5 0.01 4.7 
11-24-2000 X-1.8 50 2000 10 3.2 0.0004 4.6 
8-24-1998 X-1 15 1500 10 0.5 0.0004 6.1 
Note: Density and magnetic field strength are estimates for purposes of this calculation only. 

Problem 1:  Use the formulae and the values cited in the table to complete the last three columns. 
 
        Answer:  See above shaded table entries. This is a good opportunity to use an Excel 
spreadsheet to set up the calculations. This also lets students change the entries to see how the 
relationships change, as an aid to answering the remaining questions. 
 
 
 
Problem 2:  A geosynchronous communications satellite is orbiting at a distance of 6.6 Re. For which 
storms will the satellite be directly affected by the solar storm particles? 
    
        Answer:  All of the storms except for the ones on   April 6, 2001 and August 24, 1998 
 
 
 
Problem 3:  Within each storm event, which pressure is the strongest, ram pressure or magnetic 
pressure?  
 
         Answer:   The values for the ram pressure (Pr) are all substantially larger than the values for the 

magnetic pressure (Pm), so we conclude that ram pressure is stronger than the 
cloud’s magnetic pressure. This means that when the clouds impacts another object, 
such as Earth, it is mostly the ram pressure of the cloud that determines the outcome 
of the interaction. 

 
 Note to Teacher:  Ram pressure is the pressure produced by a cloud of particles traveling at a 
particular speed with a particular density. We call this a ‘ram’ pressure because it is also the pressure 
that you feel as you ‘ram’ your way through the air when you are in motion. Because only the relative 
speed is important, you will feel the same pressure if you are ‘stationary’ and a gas is moving past you 
at a particular speed, or if the gas is ‘stationary’ and you are trying to move through it at the same 
speed. Technically, ram pressure is the product of the gas density and the square of this relative 
speed.  
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17   Are   U   Nuts? 

 
 
 

 Converting from one set of units to another is 
something that scientists do every day. We have made this 
easier by adopting metric units wherever possible, and re-
defining our standard units of measure so that they are 
compatible with the new metric units wherever possible.  
 
 In the western world, certain older units have been 
replaced by the modern ones, which are now adopted the 
world over. (see Wikipedia under 'English Units' for more 
examples). In this exercise, you will convert from… 
 
Conversion Table: 
 
4  Gallons  =    1 Bucket                 142.065  cubic cm  =  1 Noggin 
9   Gallons  =    1 Firkin                  1.296   grams       =    1 Scruple 
126  Gallons  =    1 Butt                  201.168  meters  =    1 Furlong  
34.07  Liters    =    1 Firkin                        14   days =    1 Fortnight  
0.0685  Slugs    =    1 Kilogram            0.2  grams   =    1 Carat 

 
 
1)  A typical aquarium holds 25 gallons of water. Convert this to  A) Firkins; B) Liters, and C) 
Buckets. 
 
2)  John weighs 7.2 Slugs, and Mary weighs 53 kilograms. Who weighs the most kilograms? 
 
3) The passenger volume of a car is about  5.4 cubic meters. How many Noggins can fit inside 
the car? 
 
4)  Sven weighs 105 kilograms and finished a diet of pickled herring, losing 3.8 kilograms. A) 
How many Scruples did he lose? B) How many Scruples did he start out with? 
 
5)  The density of water is 1.0 grams/cm3. How many Scruples per Noggin is this? 
 
 
6)  Evelyn finished the Diamond Man Marathon by walking 400 kilometers in 18 days. What was 
her average speed in Furlongs per Fortnight? 
 
 
7)  A swimming pool holds 50,000 gallons of water.  How many Butts were in the pool?  
 
 
8)  If a Fathom is 72 inches, and there are 2.5 centimeters per inch, how many kilometers are 
there in 3.6 Leagues if 1 League = 2640 Fathoms? 
 
 
9)   The original Cullinan Diamond was discovered in 1904 and weighs  3,106.75 Carats. A) How 
many grams is this? B) The polished Cullinan Diamond I  (Great Star of Africa) weighs  530.2 
Carats and is worth $386 million. What is the approximate worth of the original Cullinan 
Diamond?  C) What is the going rate for diamonds in terms of dollars per Carat? D) Dollars per 
gram? 
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Answer Key: 
 
Conversion Table: 
 
4  Gallons  =    1 Bucket                 142.065  cubic centimeters    =    1 Noggin 
9   Gallons  =    1 Firkin                  1.296   grams       =    1 Scruple 
126  Gallons  =    1 Butt                  201.168  meters  =    1 Furlong  
34.07  Liters    =    1 Firkin                        14   days =    1 Fortnight  
0.0685  Slugs    =    1 Kilogram            200 milligrams   =    1 Carat 

 
 
1)  A typical aquarium holds 25 gallons of water. Convert this to   
                  A) Firkins;          25 Gallons x (1 Firkin/9 Gallons) =  2.8 Firkins 
                  B) Liters, and     2.8 Firkins x (34.07 Liters/ 1 Firkin) =  95.4 Liters 
                  C) Buckets.        25 Gallons x (1 Bucket/4 gallons) =   6.3 Buckets. 
 
2)  John weighs  7.2 Slugs, and Mary weighs 53 kilograms. Who weighs the most kilograms? 
                     John =  =  7.2 Slugs x (1 kg/0.0685 Slugs) =  105 kg   so John weighs the most kilograms. 
 
3) The passenger volume of a car is about  5.4 cubic meters. How many Noggins can fit inside the car? 
                     5.4 cubic meters x (1,000,000 cubic cm/1 cubic meter) x( 1 Noggin/142.065 cubic cm) =  38,028 Noggins! 
 
4)  Sven weighs 105 kilograms and finished a diet of pickled herring, losing 3.8 kilograms.  
A) How many Scruples did he lose?     3.8 kg x (1,000 gm/ 1kg) x (1 Scruple/1.296 grams) = 2,932 Scruples. 
B) How many Scruples did he start out with?  105 kg x( 1,000 gm/1 kg) x 1 Scruple/1.296 grams) = 81,018 Scruples 
 
5)  The density of water is 1.0 grams per cubic centimeter. How many Scruples per Noggin is this? 
1 gram  x (1 Scruple/1.296 grams) = 0.771 Scruples.   
1 cubic centimeter x ( 1 Noggin/142.065 cubic cm) = 0.007 Noggins. 
                    Dividing the two you get     0.771 Scruples/0.007 Noggins  =   110 Scruples/Noggin. 
 
6)  Evelyn finished the Diamond Man Marathon by walking 400 kilometers in 18 days. What was her average speed in 
Furlongs per Fortnight? 
400 kilometers x  (1,000 meters/ 1 km) x ( 1 Furlong/201 meters) =  1,990 Furlongs. 
18 days x  (1 Fortnight/14 days) =  1.28 Fortnights. 
                   Dividing the two you get     1,990 Furlongs/1.28 Fortnights =  1,555 Furlongs per fortnihght. 
 
7)  A swimming pool holds 50,000 gallons of water.  How many Butts were in the pool?  
 
                    50,000 gallons x ( 1 Butt / 126 gallons) =  397 Butts. 
 
8)  If a Fathom is 72 inches, and there are 2.5 centimeters per inch, how many kilometers are there in 3.6 Leagues if 1 
League = 2640 Fathoms? 
                    3.6 Leagues x ( 2640 Fathoms/ 1 League) x ( 72 Inches / 1 Fathom)  =  684,288 inches. 
 
                   684,288 inches x (2.5 cm/1 inch) x (1 meter/100 cm) x (1 kilometer/1000 meters) =  17.1 kilometers. 
 
9)   The original Cullinan Diamond was discovered in 1904 and weighs  3,106.75 Carats.  
 
A) How many grams is this?    
                   3,106.75 carats x ( 0.2 grams / 1 carat) =  621.2 grams. 
 
 B) The polished Cullinan Diamond I  (Great Star of Africa) weighs  530.2 Carats and is worth $386 million. What is the 
approximate worth of the original Cullinan Diamond?   
                   386 million dollars  x ( 3106.75  carats / 530.2  carats ) =    $2.26 billion. 
 
C) What is the going rate for diamonds in terms of dollars per Carat?    
                    386 million dollars  / 530.2 carats =   $728,027 per carat. 
 
 D) Dollars per gram? 
                     728,027  dollars  / carat  x (  1 carat  / 0.2 grams) =   $ 3.6 million / gram. 
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18 Lunar Meteorite Impact Risks 

A December 4, 2006 CNN.Com news story, based 
on the research by Bill Cooke, head of NASA's 
Meteoroid Environment Office suggests that one of the 
largest dangers to lunar explorers will be meteorite 
impacts. Between November 2005 and November 2006, 
Dr. Cooke's observations of lunar flashes (see image) 
found 12 of these events in a single year. The flashes 
were caused primarily by Leonid Meteors about 3-inches 
across, impacting with the equivalent energy of 150-300 
pounds of TNT.  
 
The diameter of the moon is 3,476 kilometers.   

 
 
 

Problem 1:  From the formula for the surface of a sphere, what is the area, in square kilometers, of the 
side of the moon facing Earth?  
 
 
 
Problem 2:  Although an actual impact only affects the few square meters within its immediate vicinity, 
we can define an impact zone area as the total area of the surface being struck, by the number of 
objects striking it.  What was the average impact zone area for a single event? 
 
 
 
Problem 3:  Assuming the area is a square with a side length 'S',  A) what is the length of the side of the 
impact area? B) What is the average distance between the centers of each impact area? 
 
 
 
 
Problem 4:  If the impacts happen randomly and uniformly in time, about what would be the time interval 
between impacts? 
 
 
 
 
Problem 5:  From the vantage point of an astronaut standing on the Moon, the horizon is about 3 
kilometers away. How long would the lunar colony have to wait before it was likely to see an impact 
within its horizon area? 
 
 
 
Problem 6: The lunar image shows that the impacts are not really random, but seem clustered into three 
groups. Each group covers an area about 700 kilometers on a side.  What is the average impact zone 
area for four strikes per zone?   
 
 
 
Problem 7: If you were an colony located in one of these three zones, what would be your answer to 
Problem 5? 
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Answer Key: 
 
 
 
 
 
 

Problem 1:  From the formula for the surface of a sphere, A) what is the area, in square kilometers, of 
the side of the moon facing Earth?    
 
Answer:    2  x 3.141 x (1738 km)2 = 1.89 x 107 km2     
 
 
Problem 2:   Answer:   1.89 x 107 km2 /12 =  1.58 x 106 km2  
 
 
Problem 3:  Assuming the area is a square with a side length 'S',  A) what is the length of the side of the 
impact area? B) What is the average distance between the centers of each impact area? 
 
 
Answer:   A)  S = (1.58 x 106 km2)1/2  about  1,257 kilometers       B)   1,257 kilometers. 
 
 
 
Problem 4:  If the impacts happen randomly and uniformly in time, about what would be the time interval 
between impacts? 
 
Answer: 1 year / 12 impacts = One month. 
 
 
Problem 5:  From the vantage point of an astronaut standing on the Moon, the horizon is about 3 
kilometers away. How long would the lunar colony have to wait before it was likely to see an impact 
within its horizon area? 
 
Answer:   1 impact per  1.58 x 106  square kilometers per month. The area of the horizon region around 
the colony  is about π x (3km)2 =  27 square kilometers.  This area is 1.58 x 106 km2 /27 km2 or about 
60,000 times smaller that the average, monthly impact area. That suggests you will have to wait about 
60,000 times longer than the time it takes for one impact or 60,000 months, which equals  5,000 years, 
assuming that the distribution of impacts is completely random, unbiased and has a uniform geographic 
distribution across the Moon's surface. 
 
 
Problem 6:    Answer:   (700 km) x (700 km) / 4 =   1 impact per 122,500 km2  zone area. 
Horizon area = 27 km2, so the impact zone area is    122,500 / 27 =  4,500 times larger.  You would 
need to wait about 4,500 x 1 month or 375 years for an impact to happen within your horizon.   
 
Note to Teacher: This calculation assumes that the clustering of impacts is a real effect that persists 
over a long time. In fact, this is very unlikely, and it is more statistically probable that when thousands of 
impacts are plotted, a more uniform strike distribution will result. This is similar to the result of flipping a 
coin 12 times and getting a different outcome than half-Heads and half-Tails.  
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19 Beyond the Blue Horizon…. 

 
 
 

 
 
 
 
 

An important quantity in planetary 
exploration is the distance to the horizon.  
This will, naturally, depend on the diameter 
of the planet (or asteroid!) and the height of 
the observer above the ground.  
 
Another application of this geometry is in 
determining the height of a transmission 
antenna in order to insure proper reception 
out to a specified distance.  
 
Teachers: Problems 1-4 can be successfully 
accomplished by algebra students. Problems 5 
and 6 require a knowledge of derivatives and can 
be assigned to calculus students after they have 
completed Problem 1 and 2. 

Problem 1:  If the radius of the planet is given by R, and the height above the surface is 
given by h, use the figure above to derive the formula for the line-of-sight horizon 
distance, D, to the horizon tangent point.  
 
 
 
Problem 2: Derive the distance along the planet, L, to the tangent point. 
 
 
 
Problem 3:   For a typical human height of 2 meters, what is the horizon distance on A) Earth 
(R=6378 km); B) Mars ( 3,374 km); C) The Moon ( 1,738 km); Mar's moon Diemos ( 6 km) 
 
 
 
Problem 4:  A radio station has an antenna tower 50 meters tall. A) What is the maximum line-of-
sight (LOS) reception distance in the Moon?  B) On Mars? 
 
 
 
Problem 5)  What is the rate of change of the lunar LOS radius, D, for each additional meter of 
antenna height in Problem 4? 
 
 
 
Problem 6)  What is the rate-of-change of the distance to the lunar radio tower, L, at the LOS 
position in Problem 4? 
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Answer Key: 
 
Problem 1:  If the radius of the planet is given by R, and the height above the surface is given by h, 
use the figure to the left to derive the formula for the line-of-sight horizon distance, D.  
 
Answer:  By the Pythagorean Theorem                                                 D2 = (R+h)2 - R2 

                                                            
so  D =  ( R

2
 + 2Rh + h

2
 - R

2
  ) 

1/2
          and so the answer is             D =  ( h

2
 + 2Rh )

1/2

 
 
Problem 2: Derive the distance along the planet, l, to the tangent point. 
Answer:   From the diagram,   Cos ( β ) =  R/(R+h)  and so  L  =  R Arccos(R/(R+h)) 
 
Problem 3:   For a typical human height of 2 meters, what is the horizon distance on A) Earth 
(R=6,378 km); B) Mars (3,374 km); C) The Moon (1,738 km); Asteroid Dactyl ( 1.4 km) 
 
Answer:  Use the equation from Problem 1. A) R=6378 km and h=2 meters so  
D = ((2 meters)2 + 2 x 2 meters x 6.378 x 106 meters) )1/2  =  5051 meters or 5.1 kilometers. 
B) For Mars,  R=3374 km            so D = 3,674 meters or 3.7 kilometers. 
C) For the Moon, R=1,738 km     so D =  2.6 kilometers 
D) For Deimos, R = 6 km            so D = 155 meters. 
 
Problem 4:  A radio station has an antenna tower 50 meters tall. A) What is the maximum line-of-
sight (LOS) reception distance on the Moon?  B) On Mars? 
 
Answer:  A) h = 50 meters, R=1,738 km       so D = 13,183 meters or 13.2 kilometers. 
               B) h = 50 meters, R=3,374 km       so D = 18,368 meters or 18.4 kilometers. 
 
Problem 5:  What is the rate of change of the lunar LOS radius, D, for each additional meter of 
antenna height in Problem 4? 
 
Answer:  Use the chain rule to take the derivative with respect to h of the equation for d in Problem 
1. Evaluate dD/dh at h=50 meters for R=1,738 km. 
 
Let U = h2 + 2Rh   then  D = U1/2  so  dU/dh = (dD/dU) (dU/dh)   
Then dD/dh = +1/2 U -1/2 dU/dh  =  +1/2 (2h + 2R) (h2 + 2Rh)-1/2

 
For h=50 meters and R = 1,738 km,  
    dD/dh =  +0.5 x (100 + 3476000)(2500 + 2 x 50 x 1738000)-1/2 

               =  +131.8 meters in LOS distance per meter of height. 
 
Problem 6:  What is the rate-of-change of the distance, L,  along the planet's surface to the lunar 
radio tower at the LOS position in Problem 4? 
 
Answer:  Let U =  R/(R+h), then L = R cos-1 (U). By the chain rule  dL/dh = (dL/dU) x (dU/dh). Since 
dL/dU = R x  (-1)(1 - u2)1/2     and     dU/dh =  R x (-1) x (R + h)-2   then    
dL/dh = R2  (R + h)-2  (R + h)1/2  /( (R+ h)2 - R2 )1/2                  dL/dh  =  R2 (R+h)-1 (h2 + 2Rh)-1/2       

Since R >> h,  dL/dh =   R/(2Rh) 1/2

Evaluating this for R = 1,738 km and h = 50 meters gives dL/dh =  +131.8 meters per 
kilometer.   
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20 Measuring the Speed of a Solar Tsunami! 

 Moments after a major class X-6 solar flare 
erupted at 18:43:59 Universal Time on December 6, 
2006, the National Solar Observatory's new Optical 
Solar Patrol Camera captured a movie of a shock 
wave 'tsunami' emerging from Sunspot 930 and 
traveling across the solar surface.   
 The three images to the left show the 
progress of this Morton Wave. The moving solar 
gasses can easily be seen. You can watch the 
entire movie and see it more clearly 
(http://image.gsfc.nasa.gov/poetry/weekly/MortonW
ave.mpeg).  
 
 Note: because the event is seen near the 
solar limb, there is quite a bit of fore-shortening so 
the motion will appear slower than what the images 
suggest. 
 
Problem 1:  From the portion of the sun's edge 
shown in the images, complete the solar 'circle'. 
What is the radius of the sun's disk in millimeters? 
 
Problem 2:   Given that the physical radius of the 
sun is 696,000 kilometers, what is the scale of each 
image in kilometers/millimeter? 
 
Problem 3:  Select a spot near the center of the 
sunspot (large white spot in the image), and a 
location on the leading edge of the shock wave. 
What is the distance in kilometers from the center of 
the sunspot, to the leading edge of the shock wave 
in each image? 
 
Problem 4: The images were taken at 18:43:05, 
18:46:02 and 18:49:02 Universal Time. How much 
time has elapsed between these images? 
 
Problem 5: From your answers to Problem 3 and 4, 
what was the speed of the Morton Wave in 
kilometers per hour between the three images?  B) 
did the wave accelerate or decelerate as it 
expanded?   
 
Problem 6: The speed of the Space Shuttle is 
44,000 kilometers/hour. The speed of a passenger 
jet is 900 kilometers/hour. Would the Morton Wave 
have overtaken the passenger jet? The Space 
Shuttle? 
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Answer Key: 

Problem 1:  From the portion of the sun's edge shown in the 
images, complete the solar 'circle'. What is the radius of the 
sun's disk in millimeters? 
 
Answer: About  158 millimeters using a regular 
dessert plate as a guide. 
 
Problem 2:   Given that the physical radius of the sun is 
696,000 kilometers, what is the scale of each image in 
kilometers/millimeter? 
 
Answer:  696,000/158 = 4,405 kilometers/millimeter 
 
Problem 3:  What is the distance in kilometers from the center 
of the sunspot, to the leading edge of the shock wave in each 
image? 
 
Answer:    
 Image 2 = 27 mm =  27x4405 = 119,000 km 
 Image 3 =  38 mm = 167,000 km 
 
Problem 4: The images were taken at 18:43:05, 18:46:02 and 
18:49:02 Universal Time. How much time has elapsed between 
these images?  
 
Answer:  Image 1 - Image 2 = 2 minutes 57 seconds 
    Image 2 - Image 3 =  3 minutes  
 
Problem 5: From your answers to Problem 3 and 4, A) what 
was the speed of the Morton Wave in kilometers per hour 
between the three images?  
 
Answer:    
 V12 = 119,000 km/2.9 min x (60 min/1 hr)  
         = 2.5 million kilometers/hour 
 
 V23 = 167,000/3.0 min x (60 min/1 hr)  
                    = 3.3 million kilometers/hour 
 
B) Did the speed of the wave accelerate or decelerate? 
Answer: Because V23 > V12 the wave accelerated. 
 
Problem 6: The speed of the Space Shuttle is 44,000 
kilometers/hour. The speed of a passenger jet is 900 
kilometers/hour. Would the Morton Wave have overtaken the 
passenger jet? The Space Shuttle? 
 
Answer: It would easily have overtaken the Space 
Shuttle!  Because of fore-shortening, the actual 
speed of the wave was even higher than the 
estimates from the images, so the speed could have 
been well over 4 million km/hr. 
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21 Do Fast CMEs produce intense SPEs? 

 
 
 

             The sun produces two basic kinds of storms; coronal mass 
ejections (SOHO satellite: top left) and solar flares (SOHO satellite: 
bottom left). These are spectacular events in which billions of tons of 
matter are launched into space (CMEs) and vast amounts of 
electromagnetic energy are emitted (Flares). A third type of 'space 
weather storm' can also occur.  
 Solar Proton Events (SPEs) are invisible, but intense, 
showers of high-energy particles near Earth that can invade satellite 
electronics and cause serious problems, even malfunctions and 
failures. Some of the most powerful solar flares can emit these 
particles, which streak to Earth within an hour of the flare event. 
Other SPE events, however, do not seem to arrive at Earth until 
several days latter. 
              Here is a complete list of Solar Proton Events between 
1976-2005:  http://umbra.nascom.nasa.gov/SEP/ 
              Here is a complete list of coronal mass ejections  1996 - 
2006:  http://cdaw.gsfc.nasa.gov/CME_list/
 
     Between January 1, 1996 and June 30, 2006 there were  
11,031 CMEs reported by the SOHO satellite. Of these, 1186 were 
halo events. Only half of the halo events are actually directed 
towards Earth. The other half are produced on the far side of the 
sun and directed away from Earth. During this same period of time, 
90 SPE events were recorded by GOES satellite sensors orbiting 
Earth. On the next page, is a list of all the SPE events and Halo 
CMEs that corresponded to the SPE events. There were 65 SPEs 
that coincided with Halo CMEs. Also included is  the calculated 
speed of the CME event. 
             From the information above, and the accompanying 
table, draw a Venn Diagram to represent the data, then answer 
the questions below. 

Question 1:   A) What percentage of  CMEs detected by the SOHO satellite were identified as Halo Events? 
                     B) What are the odds of seeing a halo Event? 
                     C) How many of these Halo events are directed towards Earth? 
 
 
Question 2:   A) What fraction of SPEs were identified as coinciding with Halo Events? 
                     B) What are the odds that an SPE occurred with a Halo CME? 
                     C) What fraction of all halo events directed towards earth coincided with  SPEs? 
 
 
Question 3:   A) What percentage of  SPEs coinciding with Halo CMEs are more intense than  900 PFUs? 
                      B) What are the odds that, if you detect a 'Halo- SPE', it will be more intense than 900 PFUs? 
 
 
Question 4:  A) What percentage of Halo-SPEs have speeds greater than 1000 km/sec? 
                    B)  What are the odds that a Halo-SPE in this sample has a speed of >  1000 km/sec? 
 
 
Question 5:  From what you have calculated as your answers above, what might you conclude about Solar 
Proton Events and CMEs? How would you use this information as a satellite owner and operator? 
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21 
Data Tables showing dates and properties of Halo CMEs and Solar 
Proton Events. 
 
 
 
 
 

Date 

CME 
Speed 
(km/s) 

SPE 
(pfu) 

 
January 8, 2002 1794 91

January 14, 2002 1492 15
February 20, 2002 952 13

March 15, 2002 957 13
March 18, 2002 989 19
March 22, 2002 1750 16

April 17, 2002 1240 24
April 21, 2002 2393 2520
May 22, 2002 1557 820
July 15, 2002 1151 234

August 14, 2002 1309 24
August 22, 2002 998 36
August 24, 2002 1913 317

September 5, 2002 1748 208
November 9, 2002 1838 404

May 28, 2003 1366 121
May 31, 2003 1835 27

June 17, 2003 1813 24
October 26, 2003 1537 466

November 4, 2003 2657 353
November 21, 2003 494 13

April 11, 2004 1645 35
July 25, 2004 1333 2086

September 12, 2004 1328 273
November 7, 2004 1759 495
January 15, 2005 2861 5040

July 13, 2005 1423 134
July 27, 2005 1787 41

August 22, 2005 2378 330
 
Note: Solar Proton Event strengths are measured 
in the number of particles that pass through a 
square centimeter every second, and is given in 
units called Particle Flux Units or PFUs. 

Date 

CME 
Speed 
(km/s) 

SPE 
(pfu) 

  
November 4, 1997 785 72
November 6, 1997 1556 490

April 20, 1998 1863 1700
May 2, 1998 938 150
May 6, 1998 1099 210
May 3, 1999 1584 14
June 1, 1999 1772 48
June 4, 1999 2230 64

February 18, 2000 890 13
April 4, 2000 1188 55
June 6, 2000 1119 84

June 10, 2000 1108 46
July 14, 2000 1674 24000
July 22, 2000 1230 17

September 12, 2000 1550 320
October 16, 2000 1336 15
October 25, 2000 770 15

November 8, 2000 1738 14800
November 24, 2000 1289 940

January 28, 2001 916 49
March 29, 2001 942 35

April 2, 2001 2505 1100
April 10, 2001 2411 355
April 15, 2001 1199 951
April 18, 2001 2465 321
April 26, 2001 1006 57

August 9, 2001 479 17
September 15, 2001 478 11
September 24, 2001 2402 12900

October 1, 2001 1405 2360
October 19, 2001 901 11
October 22, 2001 618 24

November 4, 2001 1810 31700
November 17, 2001 1379 34
November 22, 2001 1437 18900
December 26, 2001 1446 779

Space Math                              http://spacemath.gsfc.nasa.gov 
 



21 
 

Question 1:   A) What percentage of  CMEs detected by the SOHO satellite were identified as Halo Events? 
                                                    1186/11031 =  11% 
 
                     B) What are the odds of seeing a halo Event? 
                                                    1 /  0.11  =  1 chance in 9 
 
       C) How many of these Halo events are directed towards Earth? 
                               From the text, only half are directed to Earth so    1186/2 =  593 Halos. 
 
Question 2:   A) What fraction of SPEs were identified as coinciding with Halo Events? 
   65 table entries / 90 SPEs =  72% 
 
                     B) What are the odds that an SPE occurred with a Halo CME? 
                                             1 / 0.72 =   1 chance in  1.38 or  about 2 chances in 3 
 
                     C) What fraction of all halo events directed towards Earth coincided with  SPEs? 
                                             65 in Table  / (528+65) Halos  =   11% 
 
Question 3:   A) What percentage of  SPEs coinciding with Halo CMEs are more intense than  900 PFUs? 
                                         From the table, there are   12 SPEs out of 65 in this list or  12/65 =   18 % 
 
                      B) What are the odds that, if you detect a 'Halo- SPE', it will be more intense than 900 PFUs? 
                                                    1 / 0.18 =  1 chance in  5. 
 
Question 4:  A) What percentage of Halo-SPEs have speeds greater than 1000 km/sec? 
                                  There are  50 out of 65  or  50/65 =   77% 
 
                    B)  What are the odds that a Halo-SPE in this sample has a speed of >  1000 km/sec? 
                                   1 / 0.77 =   1 chance in  1.3 or 2 chances in 3. 
     
Question 5:  From what you have calculated as your answers above, what might you conclude about Solar 
Proton Events and CMEs? How would you use this information as a satellite owner and operator? 
 
A reasonable student response is that  Halo CMEs occur only 11% of the time, and of the ones directed 
towards Earth only 1 out of 9 coincide with SPEs. However, in terms of SPEs, virtually all of the SPEs 
coincide with Halo events ( 2 out of 3) and SPEs are especially common when the CME speed is above 1000 
km/sec.  As a satellite owner, I would be particularly concerned if scientists told me there was a halo CME 
headed towards Earth AND that it had a speed of over 1000 km/sec. Because the odds are now 2 chances out 
of 3 that an SPE might occur that could seriously affect my satellite.  I would try to put my satellite in a safe 
condition to protect it from showers of high-energy particles that might damage it. 
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 The January 20, 2005 solar proton event (SPE) was by some measures 
the biggest since 1989. It was particularly rich in high-speed protons packing 
more than 100 million electron volts (100 MeV) of energy. Such protons can 
burrow through 11 centimeters of water. A thin-skinned spacesuit would have 
offered little resistance, and the astronaut would have been radiation poisoned, 
and perhaps even killed. 
 
 The above image was taken by the SOHO satellite during this proton 
storm. The instrument, called LASCO, was taking an image of the sun in order 
for scientists to study the coronal mass ejection (CME) taking place. Each of the 
individual white spots in the image is a track left by a high-speed proton as it 
struck the imaging CCD (similar to the 'chip' in your digital camera).  As you 
see, the proton tracks corrupted the data being taken. 
 
 The high-speed particles from these proton storms also penetrate 
satellites and can cause data to be lost, or even false commands to be given by 
on-board computers, causing many problems for satellite operators.  
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22 Atmospheric Shielding from Radiation    I 

 
 
 

 
 
 
 
 
 

          The least expensive form of radiation shielding is a planetary atmosphere, but just how efficient is 
it? The walls of the International Space Station and the Space Shuttle provide substantial astronaut 
protection from space radiation, and have an equivalent thickness of 10 grams/cm2 of aluminum, which 
has a density of 2.7 grams/cm3. Compare this shielding to the spacesuits worn by Apollo astronauts of 
only 0.1 grams/cm2.  The atmosphere of Earth is a column of air with density of 0.0012 grams/cm3, that 
is 100 kilometers tall. How much shielding does this provide at different altitudes above the ground? 
 
          In this three-part problem, we will begin the first step in constructing a mathematical model of the 
shielding from a planetary atmosphere. A similar calculation was published by Drs. Lisa Simonsen  and 
John Nealy in February, 1993 in the article "Mars Surface Radiation Exposure for Solar Maximum 
Conditions and 1989 Solar Proton Events", (NASA Technical Paper 3300) 
 
The figure below right gives the necessary geometry and variable definitions. 

The figure shows a radiation sampling point located 'h' above Earth's surface, and radiation 
from a source at point P, which is located at a distance 'S' from the sampling point. The 
distance from Earth's surface to point P is given by 'z'. Also, as seen from the sampling point, 
the vertical arrowed ray points to a point straight overhead, and the horizontal arrowed ray 
points to the horizon. The angle 'θ' is the elevation angle of the radiation source from the 
sampling point. So, a scientist would place a radiation detector at the sampling point located 
above  Earth's surface, point the instrument at the radiation source at point P, and make a 
measurement of the amount of radiation coming from that particular direction in the sky. 
 
Problem 1:  From the information given in the figure, calculate the distance, S, in terms of h, R, 
z, and θ. 
 
Problem 2: What is the form of S(R, h, z, θ) when;   
 A)  If h is very much smaller than R?   (h approaches zero ) 
 B)  θ = 90o  ? 
 C)  If z is very much smaller than R?   (z approaches zero) 
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Problem 1:  From the information given in the figure, calculate the distance, S, in terms of h, R, z, and θ. 
First, take three deep breaths, and play with the figure a bit. After some fascinating trial-and-error attempts, the 
simplest thing to realize is that the Law of Cosines can be used. There is only one of the three forms of this Law that 
do not involve the undesired angle, β , namely: 
 
(R + Z)2 = S2 + (R + h)2 - 2 (R + h) S cos(θ + 90o) 
 
 
Where we can use the angle addition theorem, cos (A + B) = Cos(A)cos(B) - sin(A)sin(B) to simplify it: 
(R + Z)2 = S2 + (R + h)2 + 2 (R + h) S sin(θ) 
 
At first, it doesn't look like this pile of junk is useful because S doesn't appear by itself on one side of the equals 
sign. But by re-arranging, you see that it is really an equation with an interesting form: 
 
S2 + [2(R+h) sin(θ)] + [ (R + h)2   - (R + Z)2  ]  = 0           which is a quadratic equation in which the coefficients are 
 
                             A = 1                     B = 2(R+h) sin(θ)      and          C =  (R + h)2   - (R + Z)2

 
We use the quadratic equation to solve for the positive root, because the negative root has no physical meaning.  
With a 'little' algebra we get: 
 

Answer  --- >     S(R,h,z,θ) =  (  (R + h)2 sin2
θ   +  2 R (z - h) +  z2 -  h2 )1/2     -   (R + h) sin θ 

 
Problem 2: What is the form of S(R, h, z, θ) when;   
 
A)  h << R  ?   Answer:  Let  h = 0 

                                   S(R,h,z,θ) =  (  R2 sin2
θ   +  2 R z +  z2  )1/2    - R sin θ 

 
 
B)  θ = 90o  ?   Answer:  

                                 S(R,h,z,θ) =  (   (R + h)2    + 2 R (z - h) +  z2 -  h2 )1/2    - (R + h) 
  
We can simplify this as 
 

                                 S(R,h,z,θ) =  (   (R + h)2    + 2 R (z - h) +  z2 -  h2 )1/2    - (R + h) 
 

                                S(R,h,z,θ)  = ( R2 + 2Rh + h2 + 2Rz - 2Rh + z2 - h2 )1/2    - (R + h) 
 

                                 S(R,h,z,θ) =  ( R2+ 2Rz + z2)1/2    - R - h 
 
                                 S(R,h,z,θ) =  (R + z) - R - h 
 
     Answer --- >         S (R,h,z,θ) =  z - h 
 
 
 
C)  z << h  ?  Answer: Set z = 0  then 
 

S(R,h,z,θ) =  (  (R + h)2 sin2
θ   +  2 R h  -  h2 )1/2    - (R + h) sin θ 
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23 Atmospheric Shielding from Radiation    II 

 
 
 

 
 
 
 
 
 

          The least expensive form of radiation shielding is a planetary atmosphere, but just how efficient is 
it? The walls of the International Space Station and the Space Shuttle provide substantial astronaut 
protection from space radiation, and have an equivalent thickness of 10 grams/cm2 of aluminum, which 
has a density of 2.7 gm/cm3. Compare this shielding to the spacesuits worn by Apollo astronauts of only 
0.1 gm/cm2.  The atmosphere of Earth is a column of air with density of 0.0012 gm/cm3, that is 100 
kilometers tall. How much shielding does this provide at different altitudes above the ground? 
 
        In the previous problem 'Atmospheric Shielding from Radiation I' we defined a function that gives 
the length of the path from the radiation source to the measurement point located h above Earth's 
surface.  To find the amount of shielding provided by the atmosphere, we have to multiply this length, by 
the density of the atmosphere along the path S. In this problem, we will assume that the atmosphere 
has a constant density of 0.0012 grams/cm3, and see what the total shielding is along several specific 

directions defined by θ.  

The formula for S is given by: 
                                         S(R,h,z,θ) =  (  (R + h)2 sin2

θ   +  2 R (z - h) +  z2 -  h2 )1/2     -   (R + h) sin θ 
 
Assume R = 6,378 kilometers. 
 
Problem 1:   What is the form of the function that gives the shielding for a direction A) straight 
overhead (θ = 90o)  and B) at the horizon (θ = 0o),  for a station at sea-level (h=0 kilometers)? 
 
 
Problem 2: More than 90% of the atmosphere is present below an altitude of  about 2 
kilometers. If this is approximated as being uniform in height, what is the total shielding 
towards the zenith (overhead) and the horizon, if z = 2 kilometers? 
 
Problem 3: The atmosphere of Mars is about 100 times less dense, and mostly resides below 
1 kilometer in altitude. Re-calculate the answers to Problem 2, and compare the radiation 
dosage difference at the surface of each planet. 
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The formula for S is given by: 
                                         S(R,h,z,θ) =  (  (R + h)2 sin2

θ   +  2 R (z - h) +  z2 -  h2 )1/2     -   (R + h) sin θ 
 
Shielding D(R,h,z,θ) = 0.0012 x S(R,h,z,θ)    in units of gm/cm2 for S given in cm. 
 
 
 
Problem 1:   What is the form of the function that gives the shielding for  A) a direction straight 
overhead ( θ = 90o), and  B) at the horizon ( θ = 0o),  for a station at sea-level ( h=0 
kilometers)? 
 
Answer:  A)                D = 0.0012 x  Z                where Z is in centimeters. 

               B)             D(R,h,z,θ) =  0.0012 (  z2 + 2 R z)1/2    where R and z are in centimeters. 
 
 
Problem 2: More than 90% of the atmosphere is present below an altitude of  about 2 
kilometers. If this is approximated as being uniform in height, what is the total shielding 
towards the zenith (overhead) and the horizon, if z = 2 kilometers? 
 
Answer:  
 
A)     D = 0.0012  gm/cm3  x   200,000  cm   =   240 gm/cm2       for  radiation  entering from straight overhead. 
 

B)      Because z << R,   z2 <<< 2Rz   so    
   
   D  =  0.0012 x ( 2 R z)1/2       
 
       =   0.0012 x  (  2 x (2 x 105) x (6.278 x 106))1/2  
 
       =  0.0012 x 1.59 x 106 

 
       =  1916 gm/cm2     for radiation entering from the horizon direction 
 

 

Problem 3: The atmosphere of Mars is about 10 times less dense. Re-calculate the answers to Problem 
2, and compare the radiation dosage difference at the surface of each planet. 
 
Answer:  For mars, R = 3,374 km, density = 0.00012 gm/cm3 then from Problem 2: 
 
A)  D = 0.00012  gm/cm3 x  100,000 cm =   12 gm/cm2 

 
B)  D  =  0.00012 x ( 2 R z)1/2     

                =   0.00012 x  (  2 x (1 x 105) x (3.374 x 106))1/2  
          =  0.00012  gm/cm3 x   8.2 x 105 cm  
          =   98 gm/cm2 

The minimum radiation shielding comes from directions above your head that pass through the least amount of 
atmosphere. The amount of radiation shielding at the surface of Mars  is  (240 gm/cm2) /(12 gm/cm2)= 20 times less 
than on Earth. That means that radiation dosages at the surface of Mars would be about 20 times higher than on 
Earth's surface. Instead of 27 mRems/year, which is typical of the cosmic ray background on Earth's surface, you 
would receive about  27 x  20 = 560 mRems/year on Mars. Compare this with 370 mRems/year as the average 
human dosage on Earth from all sources. 
 
In the next problem 'Atmospheric Shielding from Radiation III' we will calculate this shielding more exactly. 
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          The least expensive form of radiation shielding is a planetary atmosphere, but just how efficient is 
it? The walls of the International Space Station and the Space Shuttle provide substantial astronaut 
protection from space radiation, and have an equivalent thickness of 10 grams/cm2 of aluminum, which 
has a density of 2.7 gm/cm3. Compare this shielding to the spacesuits worn by Apollo astronauts of only 
0.1 gm/cm2.  The atmosphere of Earth is a column of air with density of 0.0012 gm/cm3, that is 100 
kilometers tall. How much shielding does this provide at different altitudes above the ground? 
 
        In the previous problem 'Atmospheric Shielding from Radiation II' we estimated the atmospheric 
shielding of Earth and Mars and compared the potential radiation dosages on the planetary surface. In 
this problem, we will create a more accurate estimate by using a realistic model for the atmospheres of 
these planets. Assume R (Earth)  =  6,378 kilometers, R (Mars = 3,374 km) 

24 Atmospheric Shielding from Radiation    III 

 

 

Problem 2:   
 
A) Determine the form for S for the case of θ = 90 which gives the minimum 
planetary shielding at the surface for radiation entering from directly overhead.  
 
B) Evaluate the integral for Earth and for Mars. 
 
C)  Assuming that the radiation environments of Mars and Earth are otherwise 
similar, about how many times more would your radiation dosage be on the 
surface of Mars compared to Earth? 
 
D) How does the atmospheric shielding of Earth compare to the shielding 
provided by the International Space Station or the Space Shuttle? 

The formula for S is given by            S(R,h,z,θ) =  ( (R + h)2 sin2θ   +  2 R (z - h) +  z2 -  h2 )1/2     -   (R + h) sin θ 
 
Problem 1:   What is the form of the function S  for h=0 ?        
 
                            
The density of a planetary atmosphere is defined by the exponential function    N(z) = N(0) e (-Z/H)  where H is the 
scale-height of the gas. For the composition of Earth's atmosphere, temperature, and surface gravity, H = 8.5 km. For 
Mars, H =  11.1 km. The sea-level density for Earth, N(0)  = 0.0012 gm/cm3 , while for Mars, N(0) = 0.00020 g/cm3.   
The amount of surface shielding for radiation arriving from a direction, θ, is given by evaluating the integral below: 
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 The formula for S is given by            S(R,h,z,θ) =  (  (R + h)2 sin2θ   +  2 R (z - h) +  z2 -  h2 )1/2     -   (R + h) sin θ 

 
Problem 1:   What is the form of the function S  for h=0 ? 

                                         S(R, z,θ) =  (  R2 sin2
θ   +  2 R z +  z2  )1/2     -   R sin θ 

 
Problem 2:  The density of a planetary atmosphere is defined by the exponential function    N(z) = N(0) e (-Z/H)  
where H is the scale-height of the gas. For the composition of Earth's atmosphere, temperature, and surface gravity, 
H = 8.5 km. For Mars, H =  11.1 km. The sea-level density for Earth, N(0) = 0.0012 gm/cm3 , while for Mars, N(0) = 
0.00020 g/cm3.    
 
A) From the definition of S in Problem 1, determine the form for S for the case of θ = 90 which gives the minimum 
planetary shielding at the surface for radiation entering from directly overhead.  

Answer:    sin(90) = 1 so       S = (  R2    +  2 R z +  z2  )1/2     -   R         S  =   (R+z) - R     so    S =  z   !!! 
 
B)  Evaluate the integral for Earth and for Mars.

From A)  s = z so by 
substituting s for z, the 
integral becomes ……… 
 
 
 
Using the variable 
substitution x = z/H , you 
can put the integrand in a 
standard form……… 
 
 
Evaluating the integral….. 
 

The answer is that                            D = N(0) H  
 
 
For Earth:    D =  1.2 kg/m3 x 8.5 km     =  1,020 gm/cm2   
For Mars:     D = 0.020 kg/m3 x 11.1 km  =  22 gm/cm2  

 
 
C)  Assuming that the radiation environments of Mars and Earth are otherwise similar, about how many 
times more would your radiation dosage be on the surface of Mars compared to Earth? 
 
Answer: Note: This means that, because your maximum radiation dosage comes from radiation reaching 
you from the vertical direction (less shielding), on Mars, you will be receiving about 1,020 gm/cm2 / 22 
gm/cm2   or 46 times as much radiation on the ground as you would get on Earth. On Earth, your annual 
cosmic ray dosage is about 27 mRem /year, so on Mars the dosage could be 46 x 0.027 Rem/year =  1.2 
Rem/year.  

 
D) How does the atmospheric shielding of Earth compare to the shielding provided by the International 
Space Station or the Space Shuttle? 
 
Answer: The ISS shielding is about 10 gm/cm2, but the atmospheric shielding on the ground for Earth is 
1,020 gm/cm2 which is100 times greater! 
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25 Introduction to Radiation Shielding 
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 Satellites are designed to withstand many forms of radiation in the harsh environment of 
space. The above graph shows how the total life time radiation dosage inside a spacecraft changes as 
the amount of aluminum shielding increases. The data comes from the former MIR space station and 
the research satellite ISO. The sensitive instruments and electronic systems operate inside the 
satellite shell and are protected from harmful dosages of radiation by the shielding provided by the 
spacecraft walls. 
 
Problem 1:    You want to design a new satellite to replace the ISO satellite and to last 8 years in 
orbit, but it can only continue to work normally if it accumulates no more that 75,000 Rads of radiation 
during that time. Using the curve for ISO, how thick do the satellite walls have to be to insure this? 
 
Problem 2:   The International Space Station has the same orbit as the MIR. An astronaut will spend 
about 100 hours in space to assemble the station. If the equivalent shielding of her spacesuit is 1.0 
mm of aluminum, how large of a dosage will she receive during this time? How does it compare to the 
0.4 Rads she would receive if she stayed on the ground? 
 
Problem 3:  A cubical satellite has sides 1 meter across, and the density of the aluminum is 2.7 g/cc. 
How much  mass, in kilograms, will the satellite have with 4 mm-thick walls?  12 mm-thick walls? If the 
launch cost is $15,000 per kilogram, how much extra will it cost to launch the heavier, and better-
shielded, satellite? 



25 
Answer Key: 
 
 
 
Problem 1:    You want to design a new satellite to replace the ISO satellite and to last 8 years in 
orbit, but it can only continue to work normally if it accumulates no more that 75,000 Rads of 
radiation during that time. Using the curve for ISO, how thick do the satellite walls have to be to 
insure this? 
 
Answer:  The annual dosage would be 75,000 rads/8 years =  9,375 rads/year. From the ISO 
curve, this level of radiation would occur with about 5.5 millimeters of aluminum shielding. 
 
 
 
 
 
Problem 2:   The International Space Station has the same orbit as the MIR. An astronaut will 
spend about 100 hours in space to assemble the station. If the equivalent shielding of her 
spacesuit is 0.5 mm of aluminum, how large of a dosage will she receive during this time? How 
does it compare to the 0.4 Rads she would receive if she stayed on the ground? 
 
Answer:  The graph shows that for 0.5 millimeters equivalent spacesuit thickness and a MIR 
orbit, the annual dosage is 800 Rads. But she will only spend 100 hours in space. There are 8760 
hours in a year, so her actual dosage would be about  800 Rads/yr x (100 hrs/8760 hrs/yr) =  9.1 
Rads.  This is about 9.1/0.4 = 23 times the dosage she would get on the ground in one year..or 
equal to 23 years worth of dosage on the ground. 
 
 
 
 
 
 
Problem 3:  A cubical satellite has sides 1 meter across, and the density of the aluminum is 2.7 
grame per cubic centimeter. How much  mass, in kilograms, will the satellite have with 4 mm-thick 
walls?  12 mm-thick walls? If the launch cost is $15,000 per kilogram, how much extra will it cost 
to launch the heavier, and better-shielded, satellite? 
 
Answer:  A) A cube consists of six sides. Each side has a volume of 1 meter x 1 meter x 4 
millimeters, which in centimeters is  =   100 x 100 x 0.4 = 4000 cubic centimeters. The density of 
aluminum is 2.7 grams/cubic centimeter, so the mass of one side of the cube will be  2.7 x 4000 = 
10,800 grams or 10.8 kilograms.   The entire satellite will have a mass of 6 x 10.8 kilograms or  
64.8 kilograms.   
 
              B) With 12-millimeter walls, the mass will be   100x100x1.2 x 2.7/1000 = 32.4 kilograms.   
  C) The extra launch cost would be  (32.4 - 10.8)x $15,000/kg = $324,000 
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26   Astronomy as a Career 

 
 
 

Answer Key: 
 
 
 
 
 

 

              Imagine a job where you could study space 
and make discoveries about how the universe is put 
together. Perhaps uncover the nature of Dark Matter, 
discover life under the surface of Mars, or detect the 
first Earth-like planet orbiting a nearby star. Astronomy 
is the profession that lets you explore the universe, 
travel the world to present your discoveries to other 
scientists, and to use amazing technology to study the 
distant universe. It takes 4 years of college to get a 
Bachelors Degree in astronomy, and up to 7 years to 
get a PhD - your ticket to an exciting life-long career in 
space science. It is hard work, but most of us that have 
chosen this career cannot imagine any other career 
that for us is equally worth doing or as exciting. Here is 
what the American Institute of Physics has to say about 
the statistics of astronomy: 
 
 “In astronomy, the PhD class of 2001  included 
101 students with 24% women and 27% foreign 
citizens. Almost three quarters of the combined PhD 
classes reported accepting postdoctoral appointments. 
The survey finds that "astronomy PhDs felt very 
positive about their degree and employment situation."  
The class of 2001 produced 274 astronomy bachelors, 
and the class of 2002 produced 325, with 42% women 
and 6% foreign citizens in the combined classes." 
(http://www.aip.org/fyi/2005/067.html) 
 The top figure is the number of Bachelors and 
PhDs in astronomy granted each year. The bottom 
figure is the number of professional members of the US 
American Astronomical Society in the 'Junior' and 'Full' 
categories. Also shown is the US population growth (x 
1/100,000).  
 
From this graphical information, answer the following 
questions: 

1 - According to Figure 1 in the year 2000, about how many PhDs in astronomy were awarded? 
 
2 - According to Figure 1, about what was the percentage of PhDs received in astronomy compared to 
those awarded a Bachelor’s degree in 2004? 
 
3 - According to the text, what two groups have seen the largest changes in terms of Bachelors degree 
awards? 
 
4 -  In Figure 2, does population increase during 1985 - 2000 account for the changes in the number of  
professional astronomers in the USA? What other factors might be involved to stimulate interest in 
astronomy as a career since 1985? 
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26 Answer Key: 

 1 - According to Figure 1 in the year 2000, about how many PhDs in astronomy were awarded? 
 
Answer: Estimates may vary but numbers near 145 are acceptable. The best way to determine this is to 
use a ruler and draw a line up from '2000' until it meets the  'PhD' curve, then draw a horizontal line to the 
left-hand vertical axis. Then interpolate between 100 and 150. 
 
 
 
 
2 - According to Figure 1, about what was the percentage of PhD degree recipients in astronomy 
compared to Bachelor’s degree recipients in 2004? 
 
Answer:   There were about 110 PhDs and 320 Bachelors degrees awarded, so about 1/3 or 33% were 
awarded the PhD. Some students may have decided not to complete an advanced degree, or to enter 
another PhD program in a non-astronomy field. The one-in-three does not mean that 2 of 3 Bachelors 
recipients failed to complete a PhD. 
 
 
 
 
3 - According to the text, what two groups have seen the largest increase in terms of Bachelors degree 
awards? 
 
Answer:  The percentage of women receiving Bachelors degrees in astronomy has grown from 24% in ca 
2001 to 42% in 2002.   During the same period, the number of foreign degrees conferred fell from  27% in 
2001 to 65% in 2002. 
 
 
 
 
4 -  Does population increase during 1985 - 2000 account for the changes in the number of  professional 
astronomers in the USA? What other factors might be involved to stimulate interest in astronomy as a 
career since 1985? 
 
Answer: The US population increase during this time was 230 million to  280 million which is  100% x 
(280-230)/230 =  21.7 %. The growth of astronomers was  100% x ( 7000-4200)/4200 = 66.7 %., so 
population growth doesn't explain why there are more astronomers in 2000. A major factor that influences 
the growth of astronomers is exciting new resources like the Hubble Space Telescope, Mars Rovers and 
exploration, and frequent news stories about 'astronomers discover planets orbiting distant stars'. This 
motivates students to consider astronomy as a career and eventually causes a surge in new PhDs after 5-
8 years.   
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27   Solar Storms: Odds, Fractions and Percentages 

 
 
 

      One of the most basic activities that scientists perform with their data is to look for correlations 
between different kinds of events or measurements in order to see if a pattern exists that could suggest 
that some new 'law' of nature might be operating.  Many different observations of the Sun and Earth 
provide information on some basic phenomena that are frequently observed. The question is whether 
these phenomena are related to each other in some way. Can we use the sighting of one phenomenon as 
a prediction of whether another kind of phenomenon will happen? 
     During most of the previous sunspot cycle (January-1996 to June-2006), astronomers detected 11,031 
coronal mass ejections, (CME: Top image) of these 1186 were 'halo' events. Half of these were directed 
towards Earth. 
     During the same period of time, 95 solar proton events (streaks in te bottom image were caused by a 
single event) were recorded by the GOES satellite network orbiting Earth. Of these SPEs,  61 coincided 
with Halo CME events.  
     Solar flares (middle image) were also recorded by the GOES satellites. During this time period, 21,886 
flares were detected, of which 122 were X-class flares. Of the X-class flares, 96 coincided with Halo 
CMEs, and 22 X-class flares also coincided with  22 combined SPE+Halo CME events. There were 6 X-
flares associated with SPEs but not associated with Halo CMEs. A total of 28 SPEs were not associated 
with either Halo CMEs or with X-class solar flares.  
 
      From this statistical information, construct a Venn Diagram to interrelate the numbers in the above 
findings based on resent NASA satellite observations, then answer the questions below. 
 

 

1 -  What are the odds that a CME is directed towards Earth?   
 
2 - What fraction of the time does the sun produce X-class flares?   
 
 
3 - How many X-class flares are not involved with CMEs or 
SPEs?      
 
 
4 - If a satellite spotted both a halo coronal mass ejection and an 
X-class solar flare, what is the probability that a solar proton 
event will occur?   
 
 
5 -  What percentage of the time are SPEs involved with Halo 
CMEs, X-class flares or both?    
 
 
6 - If a satellite just spots a Halo CME, what are the odds that an 
X-class flare or an SPE or both will be observed? 
   
 
7 - Is it more likely to detect an SPE if a halo CME is observed, or 
if an X-class flare is observed? 
  
 
8 - If you see either a Halo CME or an X-class flare, but not both, 
what are the odds you will also see an SPE? 
 
9 - If you observed 100 CMEs, X-class flares and SPEs, how 
many times might you expect to see all three phenomena? 
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Answer Key: 

Venn Diagram Construction. 
 
1. There are 593 Halo CMEs directed 
to Earth so   593 = 74 with flares + 39 
with SPEs  + 22 both SPEs and Flares 
+ 458 with no SPEs or Flares.. 
 
2. There are 95 SPEs.  95 = 39 with 
CMEs + 6 with flares + 22 with both 
flares and CMEs + 28 with no flares or 
CMEs 
 
3. There are 122 X-class flares. 122 = 
74 With CMEs only + 6 with SPEs only 
+ 22 both CMEs and SPEs + 20 with 
no CMEs or SPEs. 

 
 
 
 
 
 

1 -  What are the odds that a CME is directed towards Earth?  593/11031 =  0.054   odds = 1 in 19 
 
2 - What fraction of the time does the sun produce X-class flares?   122/21886 =  0.006  
 
3 - How many X-class flares are not involved with CMEs or SPEs?     122 - 74 - 22 - 6 = 20. 
 
4 - If a satellite spotted BOTH a halo coronal mass ejection and an X-class solar flare, what is the 
probability that a solar proton event will occur?   22/(74+22) =  0.23 
 
5 -  What percentage of the time are SPEs involved with Halo CMEs, X-class flares or both?   
  100% x (39+22+6 / 95)   =  70.1 % 
 
6 - If a satellite just spots a Halo CME, what are the odds that an X-class flare or an SPE or both will 
be observed? 
                    39+22+74 / 593    =   0.227  so the odds are 1/0.227 or about 1 in 4. 
 
7 - Is it more likely to detect an SPE if a halo CME is observed, or if an X-class flare is observed? 
                                        (6+22)/95     =   0.295   or 1 out of 3 times  for X-flares   
                                        (39+22)/95   =   0.642 or 2 out of  3  for Halo CMEs 
It is more likely to detect an SPE if a Halo CME occurs by 2 to 1. 
 
8 - If you see either a Halo CME or an X-class flare, but not both, what are the odds you will also see 
an SPE? 
         39+6 / 95  =   0.50  so the odds are   1/0.50 or  2 to 1 . 
 
9 - If you observed 100 CMEs, X-class flares and SPEs, how many times might you expect to see all 
three phenomena? 
 
              100 x  22/(95+122+593) =  3 times  
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28 A Study of Astronaut Radiation Dosages 

 
 
 

 The typical radiation dosage on the ground is about 1.0 milliRad/day or 360 milliRad/year. 
This dosage is considered safe, and it is an unavoidable part of the natural background that we live 
and work within. In space, however, this normal background dosage is significantly exceeded. The 
figure above shows the radiation dosages encountered by Space Shuttle astronauts during various 
missions indicated by the numbers near the bottom of the graph. For example, at the far right, 
astronauts onboard Shuttle Mission STS-31 at an orbital altitude of 335 Nautical Miles (NM), 
experienced dosages between 150 to 200 milliRads per day.  
 
 
Problem 1 - At about what altitude do most Space Shuttles orbit? 
 
 
Problem 2 - What is the average daily dose at this altitude in  milliRads/day? 
 
 
Problem 3 - For a typical Shuttle mission of 10 days, what will be the astronaut's average dose? 
 
 
Problem 4 - If the astronaut remained on the ground during this mission, how much of a dosage 
would he have acquired? 
 
 
Problem 5 - How much radiation dosage did the STS-31 astronauts accumulate during their 118-
hour mission to place the Hubble Space Telescope in orbit? 
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Answer Key: 
 
 
 
 
 
 

 The typical radiation dosage on the ground is about 1.0 milliRad/day or 360 milliRad/year. 
These dosages are considered safe, and part of the natural background that we live and work 
within. In space, however, this normal background dosage is significantly exceeded. The figure 
above shows the radiation dosages encountered by Space Shuttle astronauts during various 
missions indicated by the numbers near the bottom of the graph. For example, at the far right, 
astronauts onboard Shuttle Mission STS-31 at an orbital altitude of 335 Nautical Miles (NM), 
experienced dosages between 150 to 200 milliRads per day.  
 
 
Problem 1 - At about what altitude do most Space Shuttles orbit? 
 
 Answer - The average of the cluster of points  is near about 170 Nautical Miles. 
 
 
 
Problem 2 - What is the average daily dose at this altitude in  milliRads/day? 
 
 Answer - At 170 NM, the average dosage is about  9 milliRad/day 
 
 
 
Problem 3 - For a typical Shuttle mission of 10 days, what will be the astronaut's average dose? 
 
 Answer -  10 days  x  9 milliRad/day = 90 milliRads. 
 
 
 
Problem 4 - If the astronaut remained on the ground during this mission, how much of a dosage 
would he have acquired? 
 
 Answer -  9 days  x 1 milliRad/day = 9 milliRads. 
 
 
 
Problem 5 - How much radiation dosage did the STS-31 astronauts accumulate during their 118-
hour mission to place the Hubble Space Telescope in orbit? About how many years of ground 
dosage does this equal? 
 
 Answer  - The radiation dosage  at the orbit of STS-31 was about 200 milliRads/day.   
    The total dosage was   
   118 hours x (1 day / 24 hours ) x 200 milliRads/day = 983 milliRads. 
 
 This equals about    983 milliRads/365 milliRads =  2.7 years of ground-level dosage 
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29   Hinode Satellite Power 

 

 
 
 

 The Hinode satellite weighs approximately 700 kg (dry) and carries 170 kg of gas for  
its steering thrusters, which help to maintain the satellite in a polar, sun-synchronous orbit for 
up to  two years. The satellite has two solar panels (blue) that produce all of the spacecraft's 
power.  The panels are 4 meters long and 1 meter wide, and are covered on both sides by 
solar cells. 
 
 
Problem 1 -  What is the total area of the solar panels covered by solar cells in square 
centimeters? 
 
 
 
Problem 2 - If a solar cell produces 0.03 watts of power for each square centimeter of area, 
what is the total power produced by the solar panels when facing the sun? Can the satellite 
supply enough power to operate the experiments which require 1,150 watts? 
 
 
 
Problem 3 - Suppose engineers decided to cover the surface of the cylindrical satellite body 
with solar cells instead. If the satellite is 4 meters long and a diameter of  1 meter, how much 
power could it produce if only half of the area was in sunlight at a time? Can the satellite 
supply enough power to keep the experiments running, which require 1,150 watts? 

Space Math                               http://spacemath.gsfc.nasa.gov 
 



29 
Answer Key: 
 
 
 
 
 
 

 
Problem 1 -  What is the total area of the solar panels covered by solar cells in square centimeters? 
 
Answer:  The surface area of a single panel is  4 meters x 1 meter = 4 square meter per side. 
There are two sides, so the total area of one panel is 8 square meters. There are two solar 
panels, so the total surface area covered by solar cells is 16 square meters. Converting this 
to square centimeters: 
    16 square meters x (10,000 cm2/m2) =  160,000 cm2

 
 
Problem 2 - If a solar cell produces 0.03 watts of power for each square centimeter of area, what is the total 
power produced by the solar panels when facing the sun? Can the satellite supply enough power to operate the 
experiments which require 1,150 watts? 
 
 
Answer:    Only half of the solar cells can be fully illuminated at a time, so the total exposed 
area is  80,000 cm

2
.   The power produced is then: 

 
  Power =  80,000 cm

2 
   X  0.03 watts/cm2   =    2,400 watts. 

 
Yes, the satellite solar panels can keep the experiments running, with 2400-1150 = 1,250 
watts to spare! 
 
Problem 3 - Suppose engineers decided to cover the surface of the cylindrical satellite body with solar cells 
instead. If the satellite is 4 meters long and a diameter of 1 meter, how much power could it produce if only half of 
the area was in sunlight at a time? Can the satellite supply enough power to keep the experiments running, which 
require 1,150 watts? 
 
Answer - Surface area of a cylinder =   Area of  2 circular end caps + area of side of cylinder  

                                                          = 2 π R
2
    + 2 π R

 
h 

 
S = 2 x (3.14)  (0.5 meters) 2   + 2 x (3.14)  (0.5 meters)  (4 meters)    
    =  1.57 square meters +  12.56 square meters  
    =   14.13 square meters. 
 
Only half of the solar cells can be illuminated,  so the usable area is 7.06 square meters or  
70,600 square centimeters. The power produced is   70600 x 0.03 =  2,100 watts.  
 
Yes..the satellite can keep the experiments running with this solar cell configuration. 
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30   Hinode - Close-up of a Sunspot 

After a successful launch on September 22, 2006  the Hinode solar observatory caught a 
glimpse of a large sunspot on November 4, 2006. An instrument called the Solar Optical 
Telescope (SOT) captured this image, showing sunspot details on the solar surface.  
 
 
Problem 1 - From the clues in this image, what is the scale of the image on the right in units 
of kilometers per millimeter? 
 
 
Problem 2 - What is the size of the smallest detail you can see in the image? 
 
 
Problem 3 - Compared to familiar things on the surface of Earth, how big would the smallest 
feature in the solar image be? 
 
 
Problem 4 - The gold-colored textured surface is the photosphere of the sun. The texturing is 
produced by heated gas that is convecting from the hot interior to the cooler outer layers of 
the sun. The convecting gases form cells, called granulations, at the surface, with upwelling 
gas flowing from the center of each cell, outwards to the cell boundary, where it cools and 
flows back down to deeper layers. What is the average size of a granulation cell within the 
square? 
 
 
Problem 5 - Measure several granulation cells at different distances from the sunspot, and 
plot the average size you get versus distance from the spot center. Do granulation cells have 
about the same size near the sunspot, or do they tend to become larger or smaller as you 
approach the sunspot? 
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Answer Key: 
 

 
 
 
 
 
 

Answer 1 -  From the 40 millimeter length of the 50,000 km arrow marker, the scale of the 
image is 50,000 km/40 mm =  1250 kilometers per millimeter 
 
 
Answer 2 - The smallest detail is about  0.5 millimeters or   0.5 x 1250 = 625 kilometers 
across. 
 
 
Answer 3 -  Similar features on Earth would be continents like Greenland (1,800 km) or 
England (700 km). 
 
 
Answer 4 - Measure about 5 cells to get:  1.5 mm, 1.0 mm, 0.8mm, 1.2mm and 1.4 mm. The 
average is about  1.2 mm, so the average size is   (1.2) x 1250km = 1,500 km.  
 
 
Answer  5 -  Students should measure about 5 granulation cells in three groups; Group 1 
should be far from the center of the spot. Group 3 should be as close to the outer, tan-
colored, 'penumbra' of the spot as possible, and Group 2 should be about half-way in 
between Group 1 and 3. The average granulation sizes  do not change significantly.  
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31   Compound Interest 

 
 
 

How it works: Suppose this year I put $100.00 in the bank. The bank invests this money and at the 
end of the year gives me $4.00 back in addition to what I gave them.  I now have $104.00. My initial 
$100.00 increased in value by  100% x ($104.00 - $100.00)/ $100.00) = 4%.  Suppose I gave all of this 
back to the bank and they reinvested in again. At the end of the second year they have me another 4% 
increase. How much money do I now have? I get back an additional 4%, but this time it is 4% of $104.00 
which is  $104.00 x 0.04 = $4.16.  Another way to write this after the second year is: 
 
                                                        $100.00 x (1.04) x (1.04) =  $108.16. 
 
After 6 years, at a gain of 4% each year, my original $100.00 is now worth: 
 
                                $100.00 x (1.04) x (1.04) x (1.04) x (1.04) x (1.04) x (1.04) =  $126.53 
 
Do you see the pattern?   The basic formula that lets you calculate this 'compound interest' easily is: 
 

                                                               F = B x (1 + P/100)
T

where : 
B = the starting amount, P= the annual percentage increase, T = number of investment years.  
 
Question: In the formula, why did we divide the interest percentage by 100 and then add it to 1? 
 
 
 
 
Problem 1:  The US Space program invested $26 billion to build the Apollo Program to send 7 
missions to land on the Moon.  
 
A) What was the average cost for each Apollo mission?  
 
B)  You have probably heard your parents complain that 'prices have sure gone up this year!'. 
This is because, each year, the price for food, gasoline, and other things you buy as a family 
have been increasing each year by about 3% .This is called Inflation. It means that this year you 
have to pay $1.03 for something you bought for $1.00 last year.  Since the last moon landing in 
1972,  inflation has averaged about 4% each year. From you answer to A), how much would it 
cost to do the same Apollo moon landing in 2007? 
 
 
Problem 2:  A  NASA satellite program was originally supposed to cost $250 million when it 
started in 2000. Because of delays in approvals by Congress and NASA, the program didn't get 
started until 2005. If the inflation rate was 5% per year, A) how much more did the mission cost 
in 2005 because of the delays? B) Was it a good idea to delay the mission to save money in 
2000? 
 
 
 
Problem 3:   A scientist began his career with a salary of $40,000 in 1980, and by 2000 this had 
grown to $100,000. A) What was his annual salary gain each year? B) If the annual inflation rate 
was 3%, why do you think that his salary gain was faster than inflation during this time? 
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Do you see the pattern?   Each year you invest the money, you multiply what you started with the 
year before by 1.04. 

                                                               F = B x (1 + P/100)
T

 
Question: In the formula, why did we divide the interest percentage by 100 and then add it to 1? 
Because if each year you are increasing what you started with by 4%, you will have 4% more at 
the end of the year, so you have to write this as 1 + 4/100 = 1.04 to multiply it by the amount you 
started with. 
 
 
 
Problem 1:  The US Space program invested $26 billion to build the Apollo Program to send 7 
missions to land on the Moon.  A) What was the average cost for each Apollo mission?  
                                 Answer :  $26 billion/7 =  $3.7 billion. 
 
B)  Answer: The number of years is  2007-1972 = 35 years. Using the formula, and a calculator: 
          F = $3.7 billion  x (1 + 4/100)

35
      =  $3.7 billion x (1.04)

35
           =  $14.6 billion. 

 
 
 
 
 
Problem 2: A) Answer:   The delay was 5 years, so 
                   F = $250 million  x (1 + 5/100)

5
     = $250 million x (1.28)    =  $319 million 

 
The mission cost $69 million more because of the 5-year delay. 
 
B) No, because you can't save money starting an expensive mission at a later time. Because of 
inflation, missions always cost more when they take longer to start, or when they take longer to 
finish. 
 
 
 
 
Problem 3:   A scientist began his career with a salary of $40,000 in 1980, and by 2000 this had 
grown to $100,000. A) What was his annual salary gain each year? Answer A)  The salary grew 
for 20 years, so using the formula and a calculator, solve for X the annual growth: 
 
  $100,000 = $40,000 x ( X  )

20      X  =   (100,000/40,000) 1/20        X = 1.047 
 
So his salary grew by about 4.7% each year, which is a bit faster than inflation. 
 
B) If the inflation rate was 3%, why do you think that his salary gain was faster than inflation 
during this time?  Answer:  His salary grew faster than inflation because his employers valued 
his scientific research and gave him average raises of 1.5% over inflation each year!   
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32   Solar Flare Reconstruction 

 
 
 

 
 
 
 
 
 

            During the November 4, 2003 solar flare, the 
GOES satellite measured the intensity of the flare as its 
light increased to a maximum and then decreased. The 
problem is that the solar flare was so bright that it could 
not record the most intense phase of the brightness 
evolution - what astronomers call its light curve.   The 
figure above shows the light curve for two different x-ray 
energies, and you can see how its most intense phase 
near 19:50 UT has been clipped. This is a common 
problem with satellite detectors and is called 
'saturation'.  To work around this problem to recover at 
least some information about the flare's peak intensity, 
scientists resorted to mathematically fitting the pieces of 
the light curve that they were able to measure, and 
interpolated the data using their mathematical model, to 
estimate the peak intensity of the flare. 

X-ray Flare Data. 
 

Universal 
Time 
(UT) 

Intensity 
(Watts/m2/sec)

19:40 0.00010 
19:41 0.00060 
19:42 0.00180 
19:45 saturated 
19:50 saturated 
19:55 0.00180 
20:00 0.00140 
20:05 0.00090 
20:10 0.00060 
20:15 0.00040 
20:20 0.00030 
20:25 0.00025 
20:30 0.00020 
20:35 0.00019 
20:40 0.00017 
20:45 0.00016 
20:50 0.00015 
20:55 0.00014 
21:00 0.00012 
21:05 0.00010 

Problem 1 (Pre-Algebra):   Re-plot the data in the table and from the trend on either side of the 
saturated region, estimate the peak intensity.  
 
 
Problem 2 (Algebra):   Re-plot the data, and from the information on either side of the saturation region, 
create two exponential functions that fit the data.  Use the elapsed time since 19:40 as the independent 
variable. Find the intersections of these two functions to estimate the peak intensity and  time.  
 
 
Problem 3 (Calculus):  Integrate the piecewise function in Problem 2 to determine the area under the 
light curve to 21:05. Note: 1 Watt equals 1 Joule of energy per second. Given that the sun is 147 million 
kilometers from the GOES satellite, calculate the surface area, in square meters, of a sphere of this 
radius. Calculate the total energy, in Joules,  radiated by the flare  that passed through the surface area 
of the sphere.   
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32 
Re-plotted data to left, allowing extra space 
for interpolation. 
 
Problem 1 (Pre-Algebra):   
 
Answer:  The curves, drawn free-hand, 
intersect between 0.0035 to   0.004 
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 Problem 2 (Algebra):  Create two exponential functions that fit the data. Use the elapsed time 

since 19:40 as the independent variable.   
Rising:    From (0.0, 0.0001), (1.0, 0.0006) and (2.0, 0.00018) a best-fit exponential curve is R(T) = 
0.0001 e(+1.44T)

 
Falling:  From (20.0, 0.0018), (25.0, 0.0014), (30.0, 0.0009) and (35.0, 0.0006) a best-fit exponential 
curve is R(T) = 0.0074 e(-0.07T)

 
Find the intersections of these two functions to estimate the peak intensity and  time.  
 
0.0001 e 1.44T =  0.0074 e-0.07T

Taking loge of both sides :      loge(0.0001) + 1.44 T = loge(0.0074) - 0.07T      
              solve for T to get:          T =   (+9.21 - 4.91)/1.51  =   2.84  minutes  
  So the peak UT is  19:40 + 2.84 =  19:42.84 or  19:42:50           
 
The peak intensity is then    0.0001 e(1.44 x 2.84) =   0.006 Watts/m2

 
 
Problem 3 (Calculus):   Integrate the piecewise function in Problem 2 to determine the area 
under the light curve.   Note  1 watt x 1 second = 1 Joule. 
 
Rising-side:    From 0 to   2.84 minutes:      0.0001  x (1/1.44)  [  e (1.44 x 2.84)  -  1 ] =  0.0041 

Joules/m
2

 
Falling side from 2.84 to 85 minutes:     

                                   0.0074 x (1/0.07)  [   e 
(-0.070x2.84)

 -  e 
(-0.070*85.0)

]  
                                 =0.106 [ 0.820-0.0026] 
         =  0.0867  Joules/m2 

Combining we get   a total 'flux' of   0.091 Joules/m2

 
Given that the sun is 147 million kilometers from the GOES satellite, calculate the surface area of a 
sphere of this radius. Calculate the total energy radiated by the flare in ergs that passed through the 
surface area of the sphere.   
 
Area = 4 π (147 x 106 km)2 =     2.71 x 1017 km2  x 1.0x 106 meter2/km2 =       2.71 x 1023 m2 

Total energy =  0.091 Joules/m2 x 2.71 x 1023 m2 =  2.5 x 1022 Joules 
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33   A Lunar Transit of the Sun from Space 

 
 
 

The twin STEREO satellites captured 
this picture of our Moon passing across 
the sun's disk on February 25, 2007.  
The two satellites are located 
approximately in the orbit of Earth, but 
are moving away from Earth in opposite 
directions.  From this image, you can 
figure out how far away from the Moon 
the STEREO-B satellite was when it took 
this picture! To do this, all you need to 
know is the following: 
 
1)  The diameter of the  Moon is 3,476 
km 
 
2) The distance to the sun is  148 million 
km. 
 
3) The diameter of the sun is 0.54 
degrees 
 
Can you figure out how to do this 
using geometry? 

Problem 1:  Although the True Size of an object is measured in meters or kilometers, the 
Apparent Size of an object is measured in terms of the number of angular degrees it subtends.  
Although the True Size of an object remains the same no mater how far away it is from you, 
the Apparent Size gets smaller the further away it is.  In the image above, the Apparent Size of 
the sun was 0.54 degrees across on February 25. By using a millimeter ruler and a calculator, 
what is the angular size of the Moon? 
 
 
 
Problem 2: As seen from the distance of Earth, the Moon has an Apparent Size of 0.53 
degrees. If the Earth-Moon distance is 384,000 kilometers, how big would the Moon appear at 
twice this distance? 
 
 
Problem 3:  From your answer to Problem 1, and Problem 2, what is the distance to the moon 
from where the above photo was taken by the STEREO-B satellite? 
 
 
Problem 4: On February 25, 2007 there was a Half Moon as viewed from Earth, can you draw 
a scaled model of the Earth, Moon, Stereo-B and Sun distances and positions (but not 
diameters to the same scale!) with a compass, ruler and protractor?  
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Answer Key: 
 
 
 
 
 
 

Problem 1:   Although the True Size of an object is measured in meters or kilometers, the 
Apparent Size of an object is measured in terms of the number of angular degrees it subtends.  
Although the True Size of an object remains the same no mater how far away it is from you, 
the Apparent Size gets smaller the further away it is.  In the image above, the Apparent Size of 
the sun is 0.5 degrees across. By using a millimeter ruler and a calculator, what is the angular 
size of the Moon? 
 
Answer: The diameter of the sun is 57 millimeters. This represents 0.54 degrees, so the image 
scale is 0.54 degrees / 57 millimeters = 0.0095 degrees/mm 
The diameter of the Moon is 12 millimeters, so the angular size of the Moon is   
    
    12 mm x 0.0095 degrees/mm =  0.11 degrees. 
 
Problem 2: As seen from the distance of Earth, the Moon has an Apparent Size of 0.53 
degrees. If the Earth-Moon distance is  384,000 kilometers, how big would the Moon appear at 
twice this distance?  
     Answer: It would have an Apparent Size half as large, or 0.26 degrees. 

Problem 3: From your answer to Problem 1, 
and Problem 2, what is the distance to the 
moon from where the above photo was taken 
by the STEREO-B satellite? 
 
Answer:   The ratio of the solar diameter to the 
lunar diameter is 0.54 degrees/0.11 degrees = 
4.9. This means that from the vantage point of 
STEREO, it is 4.9 times farther away than it 
would be at the Earth-Moon distance. This 
means it is 4.9 times farther away than 
384,000 km, or  1.9 million kilometers. 
 
 
 
Problem 4: On February 25, 2007 there was a 
Half Moon as viewed from Earth, can you 
draw a scaled model of the Earth, Moon, 
Stereo-B and Sun distances and positions (but 
not diameters!) using a compass, ruler and 
protractor? 
 
Answer: The figure to the right shows the 
locations of the Earth, Moon and STEREO 
satellite. The line connecting the Moon and the 
Satellite is 4.9 times the Earth-Moon distance. 
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34   The Hinode satellite views the sun 

 
 
 

This image was taken by the X-
Ray Telescope (XRT) on the 
Hinode solar observatory in 
December, 2006. It shows the 
complex magnetic structure 
over a large sunspot called 
Active Region AR930. You can 
also see large numbers of bright 
'freckles' - each representing a 
small micro-flare. 
 
The large black 'holes' are 
places in the corona of the sun 
where high-temperature gas is 
free to escape from the sun, 
and so there is little gas to 
illuminate these regions of the 
solar corona. This is because in 
these 'coronal holes' magnetic 
field lines open out to 
interplanetary space. Closed 
field lines near the surface act 
like magnetic bottles and keep 
the heated plasma close to the 
sun, creating the bright areas 
(red and yellow colors). 
 
Using a black pen or pencil, 
try your hand at predicting 
what the magnetic field lines 
look like using the clues from 
Hinode picture! 
 
Below is an example of a field 
line model calculated from an 
image by the SOHO satellite. 
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Answer Key: 
 
Students may come up with several different versions. The main thing to look for is that in the 
regions where the Hinode  picture  shows orange or yellow, students should draw loops of 
magnetism…like a bar magnet field….that are close-in to the solar surface. In the black regions   
(north pole) of sun and the large spot to the left of the sunspot (yellow), they should draw 
magnetic lines that start in the dark region but end outside the picture because they are 
continuing on into interplanetary space.  Below is a possible drawing!   Students may notice that 
the gases are brightest in the lower-right quadrant so there are more closed magnetic field 'loops' 
there. There are also more dark areas in the top half of the image so there are probably a mixture 
of open and closed field lines, and not as many closed ones as in the lower-right quadrant. They 
should definitely realize that the two large dark areas at the top 'north' pole and to the left of the 
bright yellow sunspot region contain open field lines. The bright yellow active region should have 
a number of large loops and a higher density of them than elsewhere. 
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35   The Sunspot Cycle - endings and beginnings 

 
 
 

The above plot shows the current sunspot cycle (Number 23) based on the average monthly 
sunspot counts since January, 1994. 
 
Problem 1 - About when (month and year) did Sunspot Cycle 23 begin? 
 
Problem 2 - About when (month and year) did Sunspot Cycle 23 reach its maximum?  
 
Problem 3 - A) What was the average minimum sunspot count during the years of the 

previous sunspot  minimum?  B) What do you think the average sunspot count will be 
during the current sunspot minimum? 

 
Problem 4 - What is the number of years between sunspot minima to the nearest tenth of a 

year? 
 
Problem 5 - How long did Cycle 23 take to reach sunspot maximum? 
 
Problem 6 - When (year, month) do you predict we will reach sunspot maximum during the 

next cycle ( Cycle 24)? 
 
Problem 7 - When (year, month) do you think the next sunspot minimum will occur? 
 
Problem 8 - During which part of the sunspot cycle is there A) the greatest month-to-month 

variation in the number of sunspots counted? B) The least variation in the number 
counted? 
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Answer Key: 
 
 
 
 
 
 

Problem 1 - When (month and year) did Sunspot Cycle 23 begin? 
                 Answer: Around July, 1996 
 
 
Problem 2 - When (month and year) did Sunspot Cycle 23 reach its maximum?  
                 Answer: Around  July, 2000 and a second maximum near September, 2001 
 
 
Problem 3 - A) What was the average minimum sunspot count during the previous sunspot  
 minimum?   
                 Answer:  From the graph the monthly numbers are 5,8,6,6,12,8,13,1,0,16,13,6  for 

an average of  8 sunspots during 1996. 
 
   B) What do you think the average sunspot count will be during the current  

sunspot minimum? 
                 Answer:  About 12. 
 
 
Problem 4 - What is the number of years between sunspot minima to the nearest tenth of a 

year?   
                 Answer:  The first minimum was on July, 1996 and the current minimum seems to 

be around March ,2007 so the difference is 2007.25 - 1996.58 = 10.7 years. 
 
 
Problem 5 - How long did Cycle 23 take to reach sunspot maximum? 
     Answer:  The first maximum occurred on July 2000, the minimum was July 1996,   

so it took 4 years. 
 
 
Problem 6 - When (year, month) do you predict we will reach sunspot maximum during the 

next cycle ( Cycle 24)? 
 Answer: If we add 4 years to the current minimum on March, 2007 we get March, 

2011. 
 
 
Problem 7 - When (year, month) do you think the next sunspot minimum will occur? 
 Answer: From our answer to Problem 4, if we add 10.7 years to March, 2007 we get   

2007.25 + 10.7 = 2017.95 or December, 2017. 
 
 
Problem 8 - During which part of the sunspot cycle is there A) the greatest month-to-month 

variation in the number of sunspots counted? B) The least variation in the number 
counted? 

 Answer:  Looking at the graph, the largest variations from month to month occur near 
sunspot maximum, and the least variations occur near sunspot minimum.  
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36   Super-fast solar flares ! 

NASA's Ramaty High Energy Solar 
Spectroscopic Imager (RHESSI)  satellite 
has been studying solar flares since 2002. 
The sequence of figures to the left shows a 
flaring region observed on November 3, 
2003. This flare was rated as 'X3.9' making it 
an extremely powerful event.   A detailed 
study of this flare by astronomer  Dr. Astrid 
Veronig and her colleagues at the Institute of 
Physics of the University of Graz in Austria 
allowed scientists to determine the physical 
properties of this event.  
 
During the 4-minute flaring event, gas 
temperatures of over 45 million degrees 
Kelvin were reached in a plasma with a 
density of  400 billion atoms/cc.  
 
The figures each have a field of view of 80 
second of arc x 100 seconds of arc. The 
diameter of the sun in these angular units is 
1950 seconds of arc, and its physical 
diameter is 1,392,000 kilometers. 
 
Each image shows the main flare region 
(blue) and Images D ,E and F show a second 
'blob' being ejected by the flaring region. 
 
"X-ray sources and magnetic reconnection in the 
X3.9 flare of 2003 November 3" A. Veronig et al., 
Astronomy and Astrophysics, 2005 vol. 446, 
p.675. 

 
 
 

Problem 1 - From the information in the text, what is the size of each box in kilometers? 
 
 
Problem 2 - What is the scale of each image in kilometers per millimeter? 
 
 
Problem 3 - Between Image D and Image F, how much time elapsed? 
 
 
Problem 4 - Between Image D and Image F, how far did the plasma Blob travel in kilometers? 
 
 
Problem 5 - Between Image D and Image F, what was the average speed of the Blob in 

kilometers per second? 
 
 
Problem 6 - The SR-71 Blackbird holds the official Air Speed Record for a manned airbreathing jet 

aircraft with a speed of 3,529.56 km/h (2,188 mph). It was capable of taking off and 
landing unassisted on conventional runways. The record was set on July 28, 1976 by 
Eldon W. Joersz near Beale Air Force Base in California. Would the SR-71 have been 
able to out-run the plasma blob? 
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Answer Key: 
 
 
 
 
 
 

Problem 1 - From the information in the text, what is the size of each box in kilometers? 
 
Answer:   (100 arc-sec/1950-arcsec) x 1,392,000 km = 71,400 km. 
    (80 arcsec/1950 arcsec0 x 1,392,000 km =  57,100 km. 
 The boxes are 71,400 x 57,100 km in size. 
 
 
Problem 2 - What is the scale of each image in kilometers per millimeter? 
Answer:    The 100-arcsec edge of a box measures  34 millimeters, so the scale is (71,400 km/34 
mm) = 2,100 km/mm 
 
 
Problem 3 - Between Image D and Image F, how much time elapsed? 
Answer:      09:49:12.6 UT - 09: 48: 40.2 UT  =    72.6 - 40.2 =  30.4 seconds. 
 
 
Problem 4 - Between Image D and Image F, how far did the plasma Blob travel in kilometers? 
Answer: In Image D it was  12 millimeters from the flare center. In Image F it was 15 millimeters 
from the flare center, for a net change of 3 millimeters or   3 mm x 2,100 km/mm =  6,300 
kilometers. 
 
 
Problem 5 - Between Image D and Image F ,what was the average speed of the Blob in 
kilometers per second? 
Answer: The speed was   6,300 kilometers/30.4 seconds or    207 kilometers/sec. 
 
 
Problem 6 - The SR-71 Blackbird holds the official Air Speed Record for a manned air-breathing 
jet aircraft with a speed of 3,529.56 km/h (2,188 mph). It was capable of taking off and landing 
unassisted on conventional runways. The record was set on July 28, 1976 by Eldon W. Joersz 
near Beale Air Force Base in California. Would the SR-71 have been able to out-run the plasma 
Blob? 
 
Answer: The SR-71 traveled at a speed of 3,530 km/hour. There are 3,600 seconds in an hour, so 
the speed was  3,530 km/hr x  1 hr/3600 sec =  0.98 kilometers/sec. The solar flare blob was 
traveling at 207 kilometers per second or nearly 210 times faster!   The Blob Wins!!! 
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A note from the Author: 
 
Hi again! 
 
 I hope you and your students are enjoying this collection of unusual math problems! 
 
 Through my middle school and high school years, I was constantly inspired and 
enthralled by space and astronomy. Not surprisingly, since  it was the 1960's and these 
years in my life were bracketed by John Glen's famous orbit of Earth, and the Apollo-11 
moon landing..and, oh yes, movies like '2001: A Space Odyssey' and TV programs like 
'Outer Limits' and  'Star Trek'. (I never took 'Lost In Space' seriously!) 
 
 Although I have been a professional astronomer since 1982, Mathematics was not 
especially easy for me in elementary school, and in grades 7-12.  I would regularly get Bs 
and a few As. But in those days that was enough to guarantee you admission into virtually all 
colleges, since only about 15% of high school seniors went on to a 4-year college. I went to 
U.C. Berkeley because it was only a 40-minute bus ride from my parent's front door where I 
would live as an undergraduate. Luckily for me, UC had one of the best Astronomy and 
Mathematics Departments in the world! 
 
 Despite my non-stellar grade-school abilities, I always enjoyed math and had a 
positive attitude about it. I was intrigued by algebra and trigonometry, but that was just a 
warm-up. When I got my first taste of calculus during the end of my Senior Year at Fremont 
High School in Oakland California, it was like some kind of epiphany. I was overpoweringly 
struck by how beautiful the various mathematical symbols were; the graceful integral signs, 
the elegantly loopy partial derivative sign, the mysterious capital-deltas and the choppy-
looking sigmas. Each had a story to tell, and I was so excited that after 12 years of school, I 
could start to understand the beauty in this math. This inspiration and attitude paid off. 
 
 When I started college, my grades in math soared to straight-As with the occasional B. 
I credit all of that to a positive and inquisitive attitude towards math, but also to the simple 
fact that I had perhaps out-grown older ways of thinking that had silently held me back,  and I 
had somehow  'matured' into the subject.  
 
 So, what does this long-ago experience have to do with today's student learning in 
mathematics? Perhaps it reflects on providing additional motivation to a struggling student, 
one of which would well have been me in today's educational system. Perhaps it means that, 
when a student has a sense of what they want to be, they can more easily see why math is 
going to be an important aspect of that future career dream.  Perhaps it also means that 
students are still developing and unfolding at a time when they are asked to master 
mathematical concepts that may well be temporarily too advanced for where they are at that 
moment. 
 
 Whatever the situation, I would personally like you to know that achieving a career in 
science is a marathon, not a 100-yard dash. Some of the brightest students that race out of 
the gate first, may well not have the stamina that a slightly less adept student has, who has a 
dream of someday walking on the moon, or peering into the deepest recesses of the atom. 
 
         Sincerely, 
             Dr. Sten Odenwald 
             NASA Astronomer 
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